I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. 76(12), 2069-2083, 2004

Pure and Applied Chemistry

Vol. 76, Issue 12

Chemical reactions at surfaces and interfaces from first principles: Theory and application

Z.-P. Liu

Department of Chemistry, University of Cambridge, Cambridge, CB1 2EW, UK

Abstract: The last decade has seen rapid expansion and development in the field of density functional theory (DFT) simulation on the complex chemical processes that occur at surfaces and interfaces. The understanding of the phenomena in surface science and heterogeneous catalysis has benefited tremendously from these quantum mechanic calculations. This article reviews current progress in the theory of reactions on surfaces, in particular, those relevant to the barrier and the active site of surface reactions. Two representative reactions, namely, NO dissociation and CO oxidation, are selected to illustrate how these theoretical concepts are applied to understand catalytic reactions. Here, the pathways and energetics of these reactions under various catalytic conditions are described in detail, and the understanding of the reactions is generalized. It is concluded that DFT-based methods can be well applied to catalysis to understand the electronic structure of chemical processes and to elucidate mechanisms of complex surface reactions.

[full text - pdf 457KB]

* Pure Appl. Chem. 76, 2051-2099 (2004). A collection of invited, peer-reviewed articles by the winners of the 2004 IUPAC Prize for Young Chemists.


Page last modified 6 January 2005.
Copyright © 2005 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.