I  U  P  A  C

 

 

 

News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. 75(11/12), 1699-1707, 2003

Pure and Applied Chemistry

Vol. 75, Issues 11-12

Genetic dissection of gluco- and mineralocorticoid receptor function in mice

E. F. Greiner, S. Berger, and G. Sch�tz

Department of Molecular Biology of the Cell I, German Cancer Research Center, Im Neuenheimer Feld 280, 60120 Heidelberg, Germany

Abstract: Nuclear hormone receptors function to transduce hormonal signals into transcriptional responses by controlling the activity of specific target genes. These target genes comprise a genetic network whose coordinate activity defines the physiological responses to hormonal signals. Dissecting nuclear hormone receptor functions in vivo by gene inactivation and transgenic strategies represents an invaluable and powerful approach to increase our knowledge of these genetic networks and their physiological functions. Glucocorticoids and mineralocorticoids are involved in numerous physiological processes important to maintain metabolic, cardiovascular, central nervous, and immune system homeostasis. Germline and somatic gene targeting as well as an increased dosage of the glucocorticoid receptor (GR) allows the characterization of the various functions and molecular modes of action of this receptor. Most of the effects of the GR are mediated via activation and repression of gene expression. To separate activating from repressing functions of the GR, a point mutation was introduced which allowed us to characterize and distinguish functions dependent on GR binding to DNA from those mediated by protein/protein interaction. Cell/tissue-specific mutations of the gluco- and mineralocorticoid receptor is the basis for the evaluation of their cell-specific functions, including the characterization of target genes of the receptors in order to describe their specific effects on different targets.

*Report from a SCOPE/IUPAC project: Implication of Endocrine Active Substances for Human and Wildlife (J. Miyamoto and J.Burger, editors). Other reports are published in this issue, pp. 1617-2615.


Page last modified 29 January 2004.
Copyright © 2004 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.