

# Degumming and Centrifuge Selection, Optimization and Maintenance

IUPAC-AOCS Workshop on Fats, Oils and Oilseeds Analysis and Production

Andrew Logan Alfa Laval Copenhagen A/S



## Purpose of Degumming

- Commercial Lecithin production
- Prevent crude oil settling during storage or transport
- Waste water (prevent acidulation of gums)
- Physical Refining
- Reduction in neutralisation losses

## Gums

- Two main types
  - Hydratable Phosphatides easy to remove
  - Non-Hydratable Phosphatides (NHP) hard to remove from oil
    - Some NHP removed with hydratables in water degumming
    - requires the use of a acid to convert to hydratable for complete removal

## **Gum Content of Various Oils**

| Oil type                                                       | Phosphatides (%)                                                                                 | Phosphorus (ppm)                                                                             |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Coconut Corn Cottonseed Groundnut Palm Rapeseed Soya Sunflower | 0.02 - 0.05 $0.7 - 2.0$ $1.0 - 2.5$ $0.3 - 0.7$ $0.03 - 0.1$ $0.5 - 3.5$ $1.0 - 3.0$ $0.5 - 1.3$ | 10 - 20 $250 - 800$ $400 - 1000$ $100 - 300$ $15 - 30$ $200 - 1400$ $400 - 1200$ $200 - 500$ |

## Physical Refining

#### Feedstock Parameters

Seed Oil (Soybean, Rapeseed, Sunflower)

 higher FFA indicates low quality oil and may not be suitable for physical refining

## **Chemical Refining**

#### Feedstock Parameters

Seed Oil (Soybean, Rapeseed, Sunflower)

- FFA ≤ 3%

– Phosphorous ≤ 1200 ppm, ≤ 200 ppm desired

## Water Degumming Process Steps

- Heat oil to 60 70 °C
- Water addition and mixing
- Hydration mixing 30 minutes
- Centrifugal separation of hydrated gums
- Vacuum drying of degummed oil
- Gums dried for edible lecithin or recombined in meal

## Water Degumming



## Water Degumming

#### **Target Results:**

- Phosphorous in oil 50 to 200 ppm max.
- AI% in dried gums 65 to 70%.
- Moisture in dried oil < 0.1%.</li>

## Acid Degumming Process Steps

- Heat oil to 60 70 °C
- Acid addition and mixing
- Hydration mixing 30 minutes
- Centrifugal separation of hydrated gums
- Vacuum drying of degummed oil
- Gums recombined in meal

## **Acid Degumming**



## **Acid Degumming**

#### Target Results:

- Phosphorous in oil 20 to 50 ppm max.
- AI% in dried gums 65 to 70%
- Moisture in dried oil < 0.1%</li>

## Major Deep Degumming Methods

- Alfa Laval Special Degumming
- Super/Uni Degumming
- TOP Degumming
- Organic Refining Process
- Soft Degumming
- Enzymatic Degumming

## Deep Degumming

- Deep degumming utilizes a reagent like acid to chelate Iron, Calcium, and Magnesium away from the NHP complex. Once the Iron, Calcium, and Magnesium are removed from the NHP complex the phosphatide becomes hydratable
- Enzymatic degumming utilizes an enzyme to modify the NHP into a hydratable form.

## Alfa Laval Special Degumming

- Heat oil to 60 °C
- 0.05-0.2 % Phosphoric Acid with intensive mixing
- Partially neutralise with dilute lye (hydration water)
- Gentle mixing and holding for 60 minutes
- Gums centrifugation
- Optional water wash step for lower phosphorous
- Oil drying

## Alfa Laval Special Degumming



## Alfa Laval 2-stage Special Degumming



## Alfa Laval Special Degumming

#### **Target Results:**

- Phosphorous in oil 20 to 30 ppm max.
- Phosphorous in oil 8 to 10 ppm max. with washing
- AI% in dried gums 50 to 60%
- Moisture in dried oil < 0.1%</li>

## Deep Degumming Results

| Process                                                                                                    | Phosphatides (%)                                                            | Phosphorus (ppm)                                   |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|
| Special Degumming Super/Uni Degumming TOP Degumming Soft Degumming ORP Enzymatic Degumming Ultrafiltration | < 0.02 $0.01 - 0.04$ $0.01 - 0.02$ $< 0.01$ $< 0.02$ $0.01 - 0.02$ $< 0.01$ | < 10 $5 - 15$ $5 - 10$ $< 5$ $< 10$ $5 - 10$ $< 5$ |

www.alfalaval.com



## Disc Stack Centrifuges

Alternative name: High Speed Separators (HSS)

## Separation by Density Difference

#### Stokes' Law

$$V_g = \frac{d^2(\rho_p - \rho_l)}{18 \eta} g$$

 $V_g$  = gravitational settling velocity (m/s)

d = particle diameter (m)

 $\rho_p$  = particle density (kg/m<sup>3</sup>)

 $\rho_l$  = liquid phase density (kg/m<sup>3</sup>)

 $\eta$  = liquid phase viscosity (kg/ms)

g = gravitational acceleration (m/s<sup>2</sup>)



## Centrifugal Separation Forces coalescense/sedimentation

Settling velocity stated by Stokes' Law



Gravity separation. Driving force: 1g



Centrifugal separation. Driving force:  $r \cdot \omega^2$ 

## Gravitational to Centrifugal Force



## Clarification

Removal of solids
 phase from a mixture
 of liquid and solids



## Concentration

- Liquid/liquid separation (also solids if present)
- Maximum cleaning of the heavy phase
- Therefore holes in disc-stack closer to the centre



## Purification

- Liquid/liquid separation (also solids if present)
- Maximum cleaning of the light phase
- Therefore holes in disc-stack closer to the periphery



## HSS – Bowl Development







1890 1948 1993

## HSS – Unit Capacities



## Optimising Separation Performance

#### Fluid Handling

Gentle inlets

- Increase capacity
- No emulsion formation



Hermetic inlet

Disc inlet working principle



Lab tests



www.alfalaval.com

## Optimising Separation Performance

#### Fluid Handling

#### Porcupine outlet

- Reduced cavitation
- •Reduced air entrainment
- Reduced break-up of particles





## Optimising Separation Performance

#### Fluid Handling

Adjustable paring disc

- Adjustable during operation
- •Flexible
- Reduced energy consumption





## HSS Optimization - bowl design

- Optimized bowl and disc stack improve separation and reduce product loss.
- High capacity for handling sticky and viscous gums and soaps.
- Improved design and new high-performance stainless steel give the bowl optimal resistance to metal fatigue.



## HSS Optimization - disc stack







www.alfalaval.com

## Disc Stack

- Caulks
- Thickness
  - 0.4 2 mm
- Number
  - From 30 on smallseparators to morethan 200 on large



## **HSS Maintenance**



# Recommended Maintenance Intervals

Lubricating oil change every 1500 hours

- Intermediate service every 2000 hours
  - overhaul of bowl and inlet/outlet device

- Major service every 8000 hours
  - overhaul of complete separator

## Intermediate Service

- Outlet
  - clean and inspect. Renew o-rings
- Bowl
  - clean and inspect. Check for signs of corrosion or erosion
     Renew o-rings
- Drive system
  - check worm and worm wheel. Renew lubricating oil
- Monitoring equipment
  - check function of vibration and speed sensors

## Major Service

- Inlet
  - clean and inspect. Renew o-rings
- Outlet
  - as per Intermediate Service
- Bowl
  - as per Intermediate Service
- Drive system
  - clean and inspect worm, worm wheel and spindle. Renew bearings, rubber buffers, gaskets, o-rings and lubricating oil

## Why Planned Maintenance

- Reduced risk of unplanned stops.
- Resource allocation.
- Higher ROI by prolonged service intervals.
- Planned service.
- Pre-ordering of parts.
- Increased service quality by status check after service.
- Increased safety.

Maximize uptime and minimize operating cost!

