Two-electron aromatics containing three and four adjacent boron atoms*

C. Präsang ${ }^{1}$, A. Mlodzianowska ${ }^{1}$, G. Geiseler ${ }^{1}$, W. Massa ${ }^{1}$, M. Hofmann ${ }^{2}$, and A. Berndt ${ }^{1, \mp}$
${ }^{1}$ Fachbereich Chemie der Philipps-Universität, 35032 Marburg, Germany;
${ }^{2}$ Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Abstract

A two-electron aromatic bis(tris-trimethylsilylmethylene)-substituted tetraborane(4) was found to be a useful precursor for the synthesis of two-electron aromatic tetraboranes(6), triboracyclopropanates, as well as tetraboranes(6) distorted toward triboracyclopropanates with boryl bridges. Bishomo two-electron aromatics with a borata bridge and a protonated borata bridge, respectively, are also presented.

INTRODUCTION

Two-electron aromatics of types I-III [1-3] as well as those of types V-VII [4-6] are known experimentally, IV [7] and VIII [8] with three and four adjacent boron atoms, respectively, only from computations. The centers of all of these aromatics are connected by classical two-center-twoelectron(2c2e) σ-bonds. Two-electron aromatics with nonclassical σ-bonds, i.e., σ-electrons delocalized over more than two centers, have been postulated for $\mathbf{1}$, [9] the corner-protonated form of \mathbf{I}, on the basis of computations as early as 1980. The isoelectronic $\mathbf{2 u}$ [7] was computed in 1995 to be lower in energy than the classical $\mathbf{2} \mathbf{u}^{*}$ by not less than $54.9 \mathrm{kcal} / \mathrm{mol}$. As a first experimental approach to compounds of type 2, the boryl-bridged 2a was obtained recently by addition of 4-t-butylpyridine to the first repre-

I

V

1

II

III

VII

2u*

IV

VIII

$2 a$

[^0]sentative of two-electron aromatic tetraboranes(6) with nonclassical σ-bonds, $\mathbf{3}$ [10]. A first derivative of the corresponding two-electron aromatic tetraborane(4) 4 was also presented [11].

RESULTS AND DISCUSSION

Distorted rhomboid tetraboranes(4)

The recently described $\mathbf{3 a}$ [10] can be transformed into $\mathbf{4 a}$ by reaction with lithium naphthalenide in THF at $-100^{\circ} \mathrm{C}$ [12]. Tetraborane(4) 4b, a stereoisomer of $\mathbf{4 a}$, is obtained in low yield during the synthesis of $\mathbf{3 a}$.

4*

Due to a center of inversion, the B_{4}-ring of $\mathbf{4 b}$ is perfectly planar while that of $\mathbf{4 a}$ shows a folding angle of 177°. The lengths of the B-B edges of $\mathbf{4 b}$ [154.5(3) and $\left.179.0(3) \mathrm{pm}\right]$ are close to those of $\mathbf{4 a}$ [153.6(3), 179.1(3)], the short diagonal of $\mathbf{4 b}$ is slightly shorter [167.2(4) vs. 169.3(5)]. Obviously, four of the six electrons of the σ-skeleton in $\mathbf{4 a}, \mathbf{b}$ are mainly localized in the two short $\mathrm{B}-\mathrm{B}$ bonds. The remaining two electrons are delocalized over the four boron centers. This can be regarded as the consequence of strong hyperconjugation between formally empty p-orbitals in the plane of the B4 ring in classical 4^{*} with a σ-bond along the short diagonal. The ${ }^{11}$ B NMR chemical shifts of $\mathbf{4 b}$ (32 and 121 ppm) are similar to those of $\mathbf{4 a}$ (33 and 125 ppm). Attempts to determine the barrier of topomerization [12] of $\mathbf{4 b}$ failed due to low thermal stability of the latter.

Triboracyclopropanates by addition of nucleophiles to tetraborane(4) (4a)

Reactions of $\mathbf{4 a}$ with lithiumamides, lithiumalkyls, or $\mathrm{NaBEt}_{3} \mathrm{H}$ lead to $\mathbf{2 b}, \mathbf{2 c}$ [13], or 2d, respectively, addition of 4-t-butylpyridine or 4-dimethylaminopyridine yields blue and red solutions of $\mathbf{2 e}$ and $\mathbf{2 f}$, respectively. All new compounds were characterized by NMR spectroscopy as well as by X-ray structural analyses. Relevant distances in $\mathbf{2 b} \mathbf{- 2 f}$ are compared in Table 1 to those computed for $\mathbf{2 g - i}$ and $\mathbf{2 u}$ at the B3LYP/6-31G* level.

b: $\mathrm{R}=\mathrm{HNAr}\left(\mathrm{Ar}=3,5\right.$-di-t-butylphenyl) c: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}$
d: $\mathrm{R}=\mathrm{H}$

e: $\mathrm{R}=t-\mathrm{Bu}$
f: $\mathrm{R}=\mathrm{NMe}_{2}$

2g

2h

2i

2u

Table 1 Selected distances and angles in 2b-2f (exp.), 2g-2i, and $\mathbf{2 u}$ [calc. //B3LYP/6-31G(d)].

	2b	2c	2d	2e	2f	2g	2h	2i	2u
B2-B3	147.4	148.3	150.3	153.7	152.7	147.5	149.4	152.6	146.8
B1-B2	172.6	173.2	172.0	171.6	174.2	176.1	175.6	176.2	172.9
B1-B3	172.1	172.5	164.8	168.5	169.4	173.3	171.1	169.4	172.9
B1-B4	171.2	172.1	166.3	162.9	163.1	170.2	164.5	159.8	-
B3-B4	245.8	250.5	205.3	192.0	200.2	264.1	233.0	195.2	-
B2, B3, B1, B4	167.4	154.4	146.2	177.4	170.4	171.6	170.9	172.3	-
B3, B1, B4, X	131.0	151.8	139.8	109.1	117.3	162.8	120.8	111.2	-

Addition of nucleophiles transforms the four-membered two-electron aromatic $\mathbf{4 a}$ into threemembered two-electron aromatics $\mathbf{2 b} \mathbf{- 2 f}$. Compounds $\mathbf{2 b}$ and $\mathbf{2 c}$ are characterized by remarkably short B2-B3 distances of only 147.4 and 148.3 pm , respectively, the shortest B-B bonds ever observed. A
corresponding $B-B$ distance of 148.0 pm was calculated for the prototype $\mathrm{B}_{3} \mathrm{H}_{4}^{-}$anion $\mathbf{2 u}$ at MP2/6-31G* [7]. The B3-B4 distances in $\mathbf{2 b}$, 2c, and $\mathbf{2 g}$ (264,251 , and 264 pm) differ considerably from those in $\mathbf{2 d}, \mathbf{2 e}$, and $\mathbf{2 f}(205,192$, and 200 pm) which are close to that calculated for $\mathbf{2 i}$ (195.2 ppm). These findings can be explained by a strong interaction of the formally empty p-orbital at B4 in $\mathbf{2 d}, \mathbf{2 e}$, and $\mathbf{2 f}$ with the $3 \mathrm{c} 2 \mathrm{e} \sigma$-bond connecting B1, B2, and B3. This p-orbital is oriented close to orthogonal with respect to the axes of the p-orbitals of the aromatic π-system in $\mathbf{2 e}$ and $\mathbf{2 f}$ as seen from their B3, B1, B4, N torsional angles of 109 and 117°. The corresponding angles are considerably larger in $\mathbf{2 b}, \mathbf{2 d}$, and $\mathbf{2 c}\left(\mathrm{B} 3, \mathrm{~B} 1, \mathrm{~B} 4, \mathrm{X}=131,140\right.$, and 152°). The interaction of the p-orbital at B4 with the three-membered ring is considerably reduced in $\mathbf{2 b}$ by the amino donor at B 4 . This argumentation is supported by the even larger B3-B4 distance of 268 pm in a dianion [13] formally carrying a carbanionic donor at B 4 . In $\mathbf{2 c}$ the electronic effect of the alkyl substituent as well as steric hindrance probably reduce the interaction discussed above. Thus, strong interaction between an exocyclic boryl boron center and a negatively charged triboracyclopropane ring with a nonclassical σ-skeleton takes place in $\mathbf{2 e}, \mathbf{2 f}$, and $\mathbf{2 i}$. This interaction is considerably reduced in $\mathbf{2 b}$ and $\mathbf{2 g}$ where the formally empty p-orbital at the boryl boron is partly filled by strong donor substituents. Alternatively, conjugation can be cancelled by adding a hydride anion to the exocyclic boron: a B3-B4 distance of 280.3 pm is computed for $\mathbf{2 k}$. Our efforts for an experimental verification have been unsuccessful: addition of $\mathrm{NaBEt}_{3} \mathrm{H}$ to $\mathbf{2 d}$ does not lead to the desired product, but to the bishomo two-electron aromatic $\mathbf{5}$ discussed in the section "A bishomo two-electron aromatic with a borata bridge".

Computations on models $\mathbf{2 o}$ and $\mathbf{2 p}$ show that the orthogonal orientation of the boryl substituent is strongly preferred over the coplanar one. This observation is reminiscent of the results obtained for the dication of methylenecyclopropene [14]. In both cases, the 2 e -aromatics are poor π-electron donors due to their strong aromatic stabilization [15], but strong σ-electron donors due to ring strain.

Tetraboranes(6) distorted toward triboracyclopropanates with boryl bridges

The tetraborane(6) $\mathbf{3 c}$ is obtained by addition of 3,5-di- t-butylaniline to $\mathbf{4 a}$. Protonation of $\mathbf{2 c}$ yields $\mathbf{3 d}$, while $\mathbf{3 e}$ is accessible from $\mathrm{Me}_{2} \mathrm{NSiMe}_{3}$ and $\mathbf{3 f}$, which can be prepared from $\mathbf{3 a}$ and $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$. All compounds were characterized by NMR and X-ray structural analyses (see Table 2).

The geometrical details of the B1, B3, B4 triangle in 3c are similar to those of the corresponding triangle in $\mathbf{2 b}$. B4 of $\mathbf{3 c}$ is planar-tetracoordinate, while B2 shows a distorted tetrahedral coordination

3d

sphere and considerably longer distances to B1 and B3 than B4. Thus, $\mathbf{3 c}$ can be regarded as a two-electron aromatic with three adjacent boron atoms of type 2 , where the metal cation is replaced by an aminoboryl bridge. Computed distances for the model $\mathbf{3 u}$ are close to those determined for $\mathbf{3 c}$. Obviously, the amino substituent is responsible for the distortion of the tetraboranes(6) $\mathbf{3} \mathbf{c}$ and $\mathbf{3 u}$ toward structures of type $\mathbf{2}$. Interestingly, a comparable distortion is computed for $\mathbf{3} \mathbf{u}^{*}$ with the lone pair at nitrogen in the $\mathrm{B}_{4} \mathrm{~N}$ plane. Steric hindrance of a trimethylsilyl substituent in $\mathbf{3 d}$ leads to a similar but less pronounced distortion compared to 3c. In 3e, the amino-substituted boron is tetrahedrally distorted and has a long distance to B1.

Table 2 Selected distances $[\mathrm{pm}]$ and angles $\left[{ }^{\circ}\right]$ of $\mathbf{3 c}-\mathbf{3 f}$ (exp.) and $\mathbf{3 u}$ [calc. //B3LYP/6-31G(d)].

	3c	3u	3d	3e	3f	$\mathbf{3 u *}^{*}$
B1-B3	151.7	150.7	151.2	148.0	149.6	150.5
B1-B4	169.4	167.5	173.6	184.5	183.8	171.0
B3-B4	169.2	168.7	176.4	186.7	186.1	171.6
B2-B1	189.5	180.4	185.0	200.6	187.1	179.0
B2-B3	192.0	185.6	182.7	184.9	178.9	181.7
B2, B1, B3, B4	155.0	180.0	134.5	119.2	131.0	180.0
B3, B1, B4, X	$179.0^{\text {a }}$	$180.0^{\text {a }}$	$174^{\text {a }}$	$167.9^{\text {b }}$	$169.2^{\text {b }}$	$180.0^{\text {a }}$
B3, B1, B2, Y	$143.1^{\text {c }}$	$180.0^{\text {c }}$	$174.3^{\text {b }}$	$141.0^{\text {c }}$	$167.0^{\text {d }}$	$180.0^{\text {c }}$

[^1]
A bishomo two-electron aromatic with a borata bridge

Addition of a hydride anion to $\mathbf{2 d}$ is a slow reaction which does not lead to a compound corresponding to $\mathbf{2 k}$ but to $\mathbf{5}$ instead. A related product $\mathbf{6}$ is obtained when $\mathbf{3 g}$ [10] is reacted with $\mathrm{NaBEt}_{3} \mathrm{H}$. Note that the stereochemistry of the trimethylsilyl substituents, which is different in the starting materials $\mathbf{2 d}$ and $\mathbf{3 g}$, is retained in the corresponding products 5 and $\mathbf{6}$.

5

6

7a

$3 g$

The formation of $\mathbf{6}$ can be easily explained in analogy to the transformation of Paetzold's 7b into $\mathbf{8}$ [16]. While 7b is first attacked by an electrophilic methyl iodide at the nucleophilic B-B bond drawn in bold, the corresponding B-B bond of $\mathbf{7 a}$ is attacked intramolecularly by a nearby proton. This generates one formal negative charge at the carbon to which it was bound. A new bond between the latter and a nearby boron forms and a bridging H becomes a terminal one in 6 . A similar transformation involving migration of a silyl group to a boron center must take place after hydride addition to $\mathbf{2 d}$. The transannular distances B3-B1 and B3-B2 in 5 and $\mathbf{6}$ (181.8, 175.6, and 175.3, 176.4, respectively) are shorter than any observed in anionic bishomo aromatics before [17]. To the best of our knowledge, $\mathbf{5}$ is the first homoromatic molecule with a borata bridge. Known homoaromatics contain familiar methylene bridges, which are isoelectronic to borata bridges. In contrast, the protonated form of such a bridge, which is found in $\mathbf{6}$ and in $\mathbf{7 b}$, is common in arachno and hypho boranes. This kind of a homo bridge completes the series of classical and nonclassical homo bridges [17] by a link in between: while clas-
sical and nonclassical homo bridges contain two two-center-two-electron(2c2e) bonds or one three-center-two-electron(3c2e) bond, respectively, the protonated borata bridge contains one $2 \mathrm{c} 2 \mathrm{e}-$ bond as well as one 3c2e-bond.

CONCLUSION

In this paper, we report recent results in the chemistry of two-electron aromatics with nonclassical σ-skeletons built from three and four boron atoms. Two-electron aromatic triboracyclopropanates with a boryl substituent at the tetracoordinate boron center are obtained by addition of nucleophiles to an aromatic tetraborane(4). We present representatives of a class of molecules where $\sigma \rightarrow p$ interactions are considerably stronger than $\pi \rightarrow p$ interactions. The huge aromatic stabilization energy of two-electron aromatics like those of type 2 and ring strain in three-membered rings explain this unusual behavior. A strong tendency to form two-electron aromatics of type $\mathbf{2}$ is also observed in those compounds of type 3 which possess electronically or sterically active substituents. Intramolecular rearrangements of a tetraborane(6) dianion led to the first homoaromatic with a classical borata bridge.

ACKNOWLEDGMENT

We thank Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Polyeder) and Fonds der Chemischen Industrie for financial support.

REFERENCES

1. R. Breslow. J. Am. Chem. Soc. 79, 5318 (1957); R. Breslow. Pure Appl. Chem. 28, 111-130 (1971).
2. J. J. Eisch, B. Shafii, J. D. Odom, A. L. Reingold. J. Am. Chem. Soc. 112, 1847-1853 (1990) and literature cited therein.
3. R. Wehrmann, H. Meyer, A. Berndt. Angew. Chem. 97, 779-781 (1985); Angew. Chem., Int. Ed. Engl. 24, 788-790 (1985).
4. G. A. Olah and G. D. Mateescu. J. Am. Chem. Soc. 92, 1430-1432 (1970); M. Bremer, P. von R. Schleyer, U. Fleischer. J. Am. Chem. Soc. 111, 1147-1148 (1989).
5. M. Hildenbrand, H. Pritzkow, W. Siebert. Angew. Chem. 97, 769-770 (1985); Angew. Chem., Int. Ed. Engl. 24, 759-760 (1985); P. H. M. Budzelaar, K. Krogh-Jespersen, T. Clark, P. von R. Schleyer. J. Am. Chem. Soc. 107, 2773-2779 (1985); M. McKee. Inorg. Chem. 39, 4206-4210 (2000), and literature cited therein.
6. Y. Sahin, C. Präsang, P. Amseis, M. Hofmann, G. Geiseler, W. Massa, A. Berndt. Angew. Chem. 115, 693-695 (2003); Angew. Chem., Int. Ed. 42, 669-671 (2003).
7. A. A. Korkin, P. von R. Schleyer, M. L. McKee. Inorg. Chem. 34, $961-977$ (1995); M. L. McKee. Inorg. Chem. 38, 321-330 (1999).
8. M. J. S. Dewar and M. L. McKee. Inorg. Chem. 17, 1569-1581 (1978); A. Dreuw, N. Zint, L. S. Cederbaum. J. Am. Chem. Soc. 124, 10903-10910 (2002); Note added in proof: For a recent experimental realization of dianions of type VIII, see: W. Mesbah, C. Präsang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt. Angew. Chem. 115, 1758-1760 (2003); Angew. Chem., Int. Ed. Engl. 42, 1717-1719 (2003).
9. T. Clark and R. Weiss. J. Org. Chem. 45, 1790-1794 (1980); M. W. Wong and L. Radom. J. Mol. Struct. 198, 391-402 (1989); K. Lammertsma and P. von R. Schleyer. J. Am. Chem. Soc. 112, 7935-7940 (1990).
10. C. Präsang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt. Angew. Chem. 114, 1597-1599 (2002); Angew. Chem., Int. Ed. 41, 1526-1529 (2002).
11. A. Maier, M. Hofmann, H. Pritzkow, W. Siebert. Angew. Chem. 114, 1600-1602 (2002); Angew. Chem., Int. Ed. 41, 1529-1532 (2002).
12. C. Präsang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt. Angew. Chem. 115, 1079-1082 (2003); Angew. Chem., Int. Ed. Engl. 42, 1049-1052 (2003).
13. C. Präsang, A. Mlodzianowska, M. Hofmann, G. Geiseler, W. Massa, A. Berndt. Angew. Chem. 114, 3529-3531 (2002); Angew. Chem., Int. Ed. 41, 3380-3382 (2002).
14. J. Chandrasekhar and P. von R. Schleyer. J. Comput. Chem. 2, 356-360 (1981).
15. P. H. M. Budzelaar and P. von R. Schleyer. J. Am. Chem. Soc. 108, 3967-3970 (1986) and literature cited therein.
16. A. Neu, K. Radacki, P. Paetzold. Angew. Chem. 111, 1358-1360 (1999); Angew. Chem., Int. Ed. Engl. 38, 1281-1283 (1999).
17. M. Hofmann, D. Scheschkewitz, A. Ghaffari, G. Geiseler, W. Massa, H. F. Schaefer, A. Berndt, J. Mol. Model. 6, 257-271 (2000) and literature cited therein.

[^0]: *Lecture presented at the XI ${ }^{\text {th }}$ International Meeting on Boron Chemistry (IMEBORON XI), Moscow, Russia, 28 July-2 August 2002. Other presentations are published in this issue, pp. 1157-1355.
 ${ }^{\ddagger}$ Corresponding author: E-mail: berndt@chemie.uni-marburg.de

[^1]: ${ }^{a} X=H$
 ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{C}$
 ${ }^{c} \mathrm{Y}=\mathrm{N}$
 ${ }^{\mathrm{d}} \mathrm{X}=\mathrm{Cl}$

