DEVELOPMENT OF SYNERGISTIC NMR AND MOLECULAR MECHANICS STRATEGIES FOR DETERMINING NATURAL PRODUCT STEREOCHEMISTRY

Thomas R. Hoye, ${ }^{\dagger}$ Seif-Eldin N. Ayyad, ${ }^{\dagger}$ Andrew S. Judd, ${ }^{\ddagger}$ Dmitry O. Koltun, ${ }^{\ddagger}$ and Matthew K. Renner ${ }^{\ddagger}$
${ }^{\dagger}$ Chemistry Department, Faculty of Science, Mansoura University, New Dammiatta, Egypt
${ }^{\ddagger}$ Department of Chemistry, University of Minnesota, Minneapolis, MN 55455

Techniques that exploit straightforward aspects of NMR spectroscopy combined with conformational analysis are being developed in our laboratory. These studies are often driven by a need for new methods for determination of stereochemistry in various natural products. Both coupling constant-based and chemical shift-based NMR methods are interpretted with the help of a thorough analysis of families of conformations identified by appropriate molecular mechanics treatments. This often results in solutions to structure assignment problems that are not addressable by multi-dimensional NMR approaches.

Selected examples of this strategy, such as those outlined below, will be described:

- a study of the relative configuration of two, isomeric, 4-methylene-2-cyclohex-enones of constitution 1, isolated from Ottelia alismoides found in the delta region of the Nile River.

1

- a general method for the assignment of absolute configuration of β-chiral carboxylic acids (2).

- a general method for the determination of absolute configuration of substituted, cyclic amines (cf., 3).

The slides used in this lecture are reproduced below. Three topics were presented in reverse order to their appearance n the abstract. Topic 3 (slides number 1-17) has been the subject of previous publications ${ }^{1}$ from our laboratory. Topic 2 (slides number 18-31) includes some previously published work ${ }^{2}$ as well as some that is described in a submitted manuscript. ${ }^{3}$ Topic 3 (slides number 32-35) is described in another submitted manuscript. ${ }^{4}$

Slide \#1

Michellamines, Korupensamines, and Ancistrobrevine B

Michellamine B Korupensamine A Ancistrobrevine B

Slide \#2

NOE's Permit Assignment of the Stereogenic Axis Between C(5)-C(8')

Slide \#3

Differential Shielding by Large vs. Small "Halves" of Naphthyl Ring

Slide \#4

Conformational Considerations: Piperidine MTPA Amide

Slide \#5

Conformational Considerations: (R)-2-Methylpiperidine MTPA Amide

Slide \#6

Chemical Shifts (in ppm) and $\Delta \delta$ Values for the Individual Rotamers of R - and S-MTPA Amides of (R)-2-Methylpiperidine

	anti-R	syn-R	anti-S	syn-S		
H					$\begin{aligned} & \Delta \delta= \\ & \delta_{S}-\delta_{R} \\ & \text { (anti) } \end{aligned}$	$\begin{aligned} & \Delta \delta= \\ & \delta_{S}-\delta_{R} \\ & (\text { syn }) \end{aligned}$
2	4.93	4.14	5.06	4.35	0.13	0.21
3a	1.65	0.49	1.5	1.65	-0.15	1.16
3e	1.6	0.80	1.6	1.4	0	0.6
4a	1.5	1.5	1.5	1.57	0	0.07
4e	a	a	1.3	a	a	a
5a	1.35	1.35	0.32	1.4	-1.03	0.05
5 e	1.5	1.6	1.00	1.72	-0.5	0.12
6a	2.17	2.76	2.92	2.68	0.75	-0.08
6 e	3.70	4.58	3.74	4.57	0.04	-0.01
Me	1.14	1.20	1.21	0.31	0.07	-0.89

Slide \#7

Syn Rotamers of the R and S MTPA Amides of (R)-2-Methylpiperidine

Slide \#8

Anti Rotamers of the R and S MTPA Amides of (R)-2-Methylpiperidine

Slide \#9

Syn Rotamers of the R and S MTPA Amides of (R)-3-Methylpiperidine

Slide \#10

Anti Rotamers of the R and S MTPA Amides of (R)-3-Methylpiperidine

Slide \#11

Slide \#12

The R MTPA Derivative

Slide \#13

Slide \#14

Preparation of Norcocaine: Chloroformate Demethylation and Reduction

norcocaine

Slide \#15

Slide \#16

Syn Rotamers of the R and S MTPA Amides of the trans-Dimethyltetrahydroisoquinoline

Slide \#17

Syn Rotamers of the R and S MTPA Amides of the cis--Dimethyltetrahydroisoquinoline

Slide \#18

Fumonisin B_{1} Stereochemistry: Backbone

- "Novel Structure Elucidation of AAL Toxin T Backbone," Boyle, C. D.; Harmange, J.-C.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 4995.
- "Relative and Absolute Configuration of the Fumonisin B_{1} Backbone," Hoye, T. R.; Jimenez, J. I.; Shier, W. T. J. Am. Chem. Soc. 1994, 116, 9409.

Slide \#19

J in bis-Acetonide 1 Modeled by MM2 Analysis of Truncated 2 and 3

1

J calc $=4.7 \mathrm{~Hz}$
2

3

Slide \#20

Methodology for Calculating J Value for Each Diastereomer

1. Monte Carlo conformation search with MM2 as implemented in MacroModel.
2. Identify all conformations lying within $3 \mathrm{kcal} \mathrm{mol}^{-1}$ of the golbal minimum.
3. Determine the J value between the relevant protons in each of these conformers.
4. Calculate (Excel) the weighted average J across the Boltzmann distribution of conformers:

$$
\begin{aligned}
& \Delta G^{\circ}=-R T I n K \\
& K=\exp \left(\frac{\Delta \Delta^{\circ}}{R T}+\frac{\Delta S^{\circ}}{R}\right)
\end{aligned} \quad J_{\text {calc }}=\sum_{i} \frac{\exp \left(\frac{E_{1}}{R T}\right)}{\sum_{i}^{\exp \left(\frac{E_{2}}{R T}\right)} J_{i}, ~}
$$

Slide \#21

Slide \#22

Experimental Verification of Methodology: trans-Acetonide

Two Lowest Energy Conformers ($\sim 15 \%$ each) also supported by NOESY

Slide \#23

Fumonisin B_{1} Stereochemistry: Sidechain Propane Tricarboxylic Acid

, "Complete Structures of the Sphingosine Analog Mycotoxins, Fumonisin B_{1} and AAL
Toxin T_{A} : Absolute Configuration of the Side Chains,"
Shier, W. T.; Abbas, H. K.; Badria, F. A. Tetrahedron Lett. 1995, 36, 1571.
" "Absolute Configuration at the Tricarballylic Acid Moieties of Fumonisin B_{2},"
Boyle, C. D.; Kishi, Y. Tetrahedron Lett. 1995, 36, 4579.
" "Absolute Configuration at the Tricarballylic Acid Moieties of Fumonisin B_{1} and AAL Toxin T_{A}," Boyle, C. D.; Kishi, Y. Tetrahedron Lett. 1995, 36, 5695.

Slide \#24

Actinoplanic Acid A: Another (bis) Propane Tricarboxylic Acid Derivative

"Actinoplanic Acid A: A Macrocyclic Polycarboxylic Acid Which Is a Potent Inhibitor of Ras Farnesyl-Protein Transferase," Singh, S. B.; Liesch, J. M.; Lingham, R. B.; Goetz, M. A.; Gibbs, J. B. J. Am. Chem. Soc. 1994, 116, 11606.

Slide \#25

Absolute Configuration of β-Chiral Carboxylic Acids?

Slide \#26

Possible, Convenient Chiral Amines for Derivatizing β-Chiral Acids

Slide \#27

$\Delta \delta$ Values of pro- R and pro- S Methyl Groups in Series of Isoacids

Slide \#28

Best Conformations with Large Groups at C(3) anti to C(2)-C(1) Bond

in the UNLIKE diastereomer the 3-methyl doublet will be observed at lower field:

and in the LIKE diastereomer the 3-methyl doublet will be observed at higher field:

Slide \#29

$\Delta \delta$ Values Behave as Predicted for a Series of Amides of Known Configuration

As predicted, the 3-methyl group is further upfield in the like diastereomer
Bonus: Protons in the other $\mathrm{C}(3)$ substituent show an opposite sign in their $\Delta \delta$ values

Slide \#30

Superpositions of Families of Amber-Derived Conformers for like/unlike

unlike

Slide \#31

To Apply Method to Determination of Configuration of β-Chiral Acids:

- identify the resonance of the β-Me group as well as distinguishable ${ }^{1} \mathrm{H}$ NMR resonances for protons unique to the other substituent (R) at $\mathrm{C}(3)$ in the diastereomeric pair of arylethylamides.
- deduce the $\mathrm{C}(3)$-configurtion by comparing the sign of $\Delta \delta$ for one or more of these resonances with those expected on the basis of the conformational analysis.

Complementarity exists; that is, the $\Delta \delta^{\prime}$'s of resonances within R and those of the methyl resonance will be of opposite sign. This approach to determining the configuration of a remote stereogenic center represents a general strategy that can be adapted to other substructures.

Slide \#32

Two New Antitumor Agents

Slide \#33

Compare Observed J's with Calculated J's for all Possible Diastereomers

Slide \#34

For the cis-Fused Isomer, $\%_{J_{\text {diff }}}$ is Unable to Distinguish 11 from 12

cannot distinguish on basis of coupling data

Slide \#35

Acknowledgements We thank Mr. Abdel Sattar S. Hamad for experiments referred to in Slide \#25 and Professor W. T. Shier for his assistance with in vitro antitumor measurements.

References

1 (a) "MTPA (Mosher) Amides of Cyclic Secondary Amines: Conformational Aspects and a Useful Method for Assignment of Amine Configuration," Hoye, T. R.; Renner, M. K. J. Org. Chem. 1996 61, 2056-64. (b) "Applications of MTPA (Mosher) Amides of Secondary Amines: Assignment of Absolute Configuration in Chiral Cyclic Amines," Hoye, T. R.; Renner, M. K. J. Org. Chem. 1996, 61, 8489-8495.

2 "The Relative and Absolute Configuration of the Fumonisin B1 Backbone," Hoye, T. R.; Jiménez, J. I.; Shier, W. T. J. Am. Chem. Soc. 1994, 116, 9409-9410.

3 "A Strategy for Determination of Configuration of Remote Stereogenic Centers: 3Methylcarboxylic Acids," Hoye, T. R.; Koltun, D. O. J. Am. Chem. Soc. submitted.
4 "Isolation and Assignment of Relative Configuration of Two Potently Cytotoxic 4-Methylene-2-cyclohexenones from Ottelia alismoides," Ayyad, S-E. N.; Judd, A. S.; Shier, W. T.; Hoye, T. R. J. Org. Chem. submitted.

