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Abstract : Thermodynamic systems of interest in nuclear engineering generally consist of 
many components and many phases. To perform thermodynamic calculations involving 
equilibria among solid, liquid and gaseous phases, large evaluated databases of the 
thermodynamic properties of compounds and multicomponent solutions are required, as well 
as software for performing the equilibrium computations. The development of general Gibbs 
energy minimization software is well advanced, and a number of software packages are 
available commercially. The development of thermodynamic databases for multicomponent 
systems proceeds by the critical evaluation of sub-systems in which all available 
thermodynamic and phase equilibrium data are optimized simultaneously to obtain one self- 
consistent set of model equations for the Gibbs energies of all phases as fbnctions of 
temperature and composition. The parameters of these equations are stored in the databases, 
and the models are used to estimate the properties of the multicomponent solutions. It is very 
important to choose a model which correctly reflects the structure of the solution. Examples 
of databases and of equilibrium calculations in nuclear materials applications are presented. 

INTRODUCTION 

In recent years, several thermodynamic database computing systems for inorganic applications have been 
developed. Three of the largest are F*A*C*T (Montreal), Thermocalc (Stockholm) and MTDATA 
(Teddington, UK). These systems combine databases of the thermodynamic properties of several 
thousand pure substances and solutions with Gibbs energy minimization software for the calculation of 
multicomponent, multiphase equilibria. 

Such database systems are useful in calculations in nuclear thermodynamics which typically involve large 
numbers of components and phases. For example, Fig. 1 shows the results of an equilibrium calculation 
(1) with the F*A*C*T system to simulate a Loss-of-Coolant Accident involving a U02 fuel. The 
equilibrium condition att 2000 K and 1.0 atm is calculated when 1014.5 mol U02 with the molar trace 
element composition shown react with 3725 mol H20 and 3725 mol. H2. (H2/H20 = 1.0 , Cd(H20 + 
H2) = lo4). At equilibrium, 7455.6 mol of gas of the calculated composition shown are at equilibrium 
with several condensed phases as shown. The calculations involved consideration of 174 gaseous species 
and 210 condensed phases for which data (sometimes estimated) are available in the F*A*C*T databases. 
For brevity, Fig. 1 shows only those condensed phases which are calculated to occur at equilibrium, and 
only the major gaseous species containing each element. 

In Fig. 1 ,  only pure condensed phases are considered. The usefblness of database computing systems is 
greatly increased by the inclusion of databases for solid and liquid solutions. These solution databases 
contain the parameters of model equations giving the thermodynamic properties as functions of 
composition and temperature. These parameters are obtained by the critical evaluation and optimization 
of available data for binary and ternary solutions, and the models are then used to extrapolate to 
multicomponent solutions. 
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1014.5 UOz + 0.096 Np + 2.754 Pu + 0.824 Ce + 0.215 Y + 0.138 Te + 0.332 La + 1.442 Z!x + 
0.389 Ba + 0.899 Ru + 1.150 Mo + 0.265 Pr + 0.421 Sr + 0.0385 1 2  + 0.859 Nd + 0.043 Nb + 
0.0064 Am + 0.745 CS + 0.166 Rh + 0.006 Sb + 0.025 EU + 3725 Hz0 + 3725 Hz - - 

7455.6 rnol ( 0.50125 
+ 0.49723 
+ 0.11454E-02 
+ 0.11584E-03 
+ 0.73447E-04 
+ 0.60706E-04 
+ 0.36397E-04 
+ 0.22365E-04 
+ 0.22265E-04 
+ 0.18304E-04 
+ 0.49495E-05 
+ 
+ 
+ 
+ 
+ 

0.34483E-05 
0.32535E-05 
0.27916E-05 
0.24118E-05 
0.23 163E-05 
0.21235E-05 
0.21085E-05 
0.1816OE-05 
0.1642OE-05 
0.12401E-05 
0.1 19 13E-05 
0.95219E-06 

Hz 
H20 
H 
OH 
CsOH 
02Mo(OH)2 
B a ( W 2  
c s  
Rho2 
Te 
I 
U03 
CSI 
Nd02 
LaO2H2 
MOO3 
HI 
(Eu02H2) 
Nboz 
BaMo04 
@UOH) 
BaDH 
BaO 

+ 0.80043E-06 
+ 0.11040E-06 
+ 0.73949E-07 
+ 0.22334E-07 
+ 0.10175E-07 
+ 0.30321E-08 
+ 0.33775E-09 
+ 0.326448-09 
+ 0.32967E-10 
+ 0.78378E-12 
+ . . . . . . . . . . . . . . . . . .  

Solids and Liauids 
+ 1014:l mol 
+ 2.7534 rnol 
+ 0.50174 rnol 
+ 0.42100 rnol 
+ 0.41908 rnol 
+ 0.29947 rnol 
+ 0.15695 rnol 
+ 0.13233 rnol 
+ 0,13208 rnol 
+ 0.10750 rnol 
+ 0.96000E-01 rnol 

Sb 
Pro 
Pu02 
RuOH 
RuO 
CeO 
Y02H2 
Am02 
zro2 
Sr(OH)2 
. )  a 

u02 
pu02 
Ru 
(SrUO4) 
(Nd203)(Zr02) 
zro2 
La203 
Mo5Ru3 
Pr203 
(Y203)(ZrO2)2 
N f l 2  

+ 0.89372E-01 rnol (B~o)(zIQz) 
+ 0.45776E-01 rnol Cc18031 
+ 0.14062E-01 rnol Nb205 
+ 0.31987E-02 rnol Am203 

Fie. 1 Calculated (1) Equilibrium conditions at 2000 K and 1.00 atm for reaction of UOz containing trace 
elements with (Hz/HzO) = 1.0 and Cs/(HzO + H2) = lo4 in a Loss-of-Coolant Accident 

The aim of the present article is to give a brief introduction to the current state of the art in the 
thermodynamic modeling of solutions, and to provide a few examples of applications of large evaluated 
solution databases to nuclear thermodynamics. The examples are taken from the F*A*C*T system of 
which the author is a co-developer. 
A more detailed discussion of the models can be found in references (2, 3). 

POLYNOMIAL MODELS 
In the simplest model, for a binary solution A-B, the molar Gibbs energy is given by : 

where g,? is the Gibbs energy of pure i, 4 is the mole fraction of i ,  and g" is the excess Gibbs energy 
which can be expanded as : 

where the ' L are parameters which are, in general, functions of T. If only the first term, L , is 
non-zero, then a = constunt and the solution is (( regular D. 
A critical evaluatiodoptimization of a binary solution consists in determining the values of the parameters 
which best reproduce simultaneously all available data (activities, Gibbs energies, enthalpies of mixing, 
phase diagrams, etc.) Generally, the experimental phase diagram is the most useful source of data. 
Furthermore, since a major practical goal of developing the database is to permit the calculation of 
heterogeneous equilibria, it is most important to reproduce the phase diagram. As an example, the 

g = ( X A g :  + X , g , " ) + R T ( X A  In X, + X ,  In X , ) + g "  

g E = a x A x , = p L  + ' L ( X , - X , ) + ~ L ( X ~ - X ~ ) ~ +  ...I xAxB 

(la) 

0 )  
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E -  Y ( r )  
6'- Pu 
6 - Pu 
y - P u  
p - Pu 
P - u  
a - u  

rl 

c 

= X p , X u  ( 7 3 0 -  3 9 0 X u )  

= g ;  ( p )  + ( 2 2 0 4  - 0 . 4 7 4 5  T )  
= g ;  ( p )  + ( 2 2 2 8  - 0 . 4 7 4 5  7') 
= g;  ( y )  + ( 9 5 3 . 5  + 0 . 8 9 6 7  T )  
= g;  ( y )  + ( 2 0 5 . 3  + 1 . 1 3 0 7  T )  
= g ; " (  E )  + ( 4 9 1 . 3  + 0 . 0 8 2 8 T )  

= g; ,  ( & )  + ( - 3 2 2 . 0  + 1 . 7 9 2  T )  
= g ; ,  ( E  ) + ( - 1 6 9  + 0 . 2 7 1 4  7 ' )  
= g ; ( p )  + ( 1 2 8 - 0 . 0 8 3 8 T )  

= X p , X u  ( - 7 6 0 . 2  + 1 . 3 3 8  T - 1 3 8 . 8  X u )  
= g; ,  ( E )  + ( - 6 6 9  + 1 . 7 9 1 4  7') 
= - 1 7 4 2 . 7  + 3 1 . 9 8 8 3 7  + 4 . 3 5 0 0  ( l o - ' )  T 2  

- 1 . 0 8 6 3 3  T' - 6 . 5 4 7 0  T I n  T + 1 1 4 5 0 . 0  T - I  

calculated Pu-U phase diagram (4, 5) is shown in Fig. 2 along with some experimental data points (6-8). 
Although data points are not shown in the lower part of the diagram, the fit is as good. The optimized 
parameters used to calculate the diagram are given in Table 1. These were obtained by least-squares 
optimization of the phase diagram data. Techniques of least squares optimization have been discussed (9- 
11). The values of gf for the stable phases of Pu and U were taken from the F*A*C*T pure substance 
database. Note that for a phase such as y-Pu, in which U is only sparingly soluble, becomes an 
adjustable model parameter. For the q and < phases, both g:, and g: are adjustable model 
parameters. 

TABLE 1 Optimized Parameters (cal/mol) for the Pu-U system (4) 
L i q u i d  

g L  = X p , X u  ( - 1 7 5 0  + 2 0 0  X u )  g L  = X p , X u  ( - 1 7 5 0  + 2 0 0  X u )  

Similar optimizations of the U-Zr and 
Pu-Zr systems have been performed (12, 
5). Each contains a r solid solution 
phase of the same structure as the r(E-y) 
phase in the Pu-U system. To the Gibbs 
energy of the ternary r solution, we apply 
regular solution theory : 

~ ~ A B X A x ~ + a ~ c x ~ x c + a , x c X ,  (2) 
where A, B, C = U, Pu, Zr. However, we 
see in Table 1 that apuu is not constant 
but is equal to (730-390 XU) in the Pu-U 

: binary system. Similarly aPuZr and a, 
are not constant. For the ternary solution 

0.0  0.2  0 . 4  0 .6  0 . 0  l.o we follow the model of Kohler (13) that 
U a, = constant along lines of constant 

X i  / X, ratio. (Other similar models are 
Fip.Calculated optimized Pu-U phase diagram (4 )  also used. See (2, 3)) We can now use 

the model to calculate the solvus surface 
of the r phase in equilibrium with other lower-temperature solids in the ternary system. The resultant 
calculated solvus is a few degrees lower than the available experimental data, so we add a small 
adjustable ternary term of (3800 X,, X u  X z r )  to Eq (2) in order to give the calculated solvus in Fig. 3 
(5) which agrees within experimental error limits with all available ternary data. This system is of interest 
in the Integral Fast Reactor (IFR) fuel. 

<PA'C'T> 

x + Uelman e t  al. 
v 4 muna Laboratory 

Pu YOIe fraction U 
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As another example, the liquidus of the Fe-U-Zr system, calculated (14) by the Kohler model from the 
optimized properties of the binary systems with no additional ternary terms is shown in Fig. 4. In these 
calculations it was assumed that solid Fe2U and FezZr are immiscible. If, instead, an ideal solid solution 
of FezU and Fe2Zr is assumed, then the liquidus temperature is increased ,but only in this composition 
region. Most likely, Fe2U and Fe2Zr are partially miscible, and a few measurements of liquidus 
temperatures in this region will permit the FezU-Fe2Zr solid solution to be modeled. 

The binary and ternary parameters are stored in the solution databases. By the systematic optimization of 
many binary and ternary systems, large multicomponent databases are developed. Eq (2), along with the 
Kohler or similar models, is used to estimate the properties for a multicomponent solution from the 
stored parameters of its binary and ternary sub-systems. For example, reasonable calculations of phase 
equilibria in the quaternary Fe-U-Pu-Zr system can now be made. This system is of interest in 
fuel-cladding interactions in the IFR, as well as in major reactor accident scenarios. 

Calculated projection of the solws surface of the solid solution 
phase in the Pu-U-Zr system (5). (T in "C) 

As a final example, from 
optimizations of the binary systems 
LiCI-CeC13, CaC12-CeC13 and 
LiCl-CaC12, the thermodynamic 
properties of ternary liquid 
LiC1-CaClz-CeCb solutions were 
estimated (1 5 )  (with no additional 
ternary terms). The calculated 
ternary eutectic point at 425°C at 
48% CeC13, 25% CaClz and 27% 
LiCl (all weight %) agrees well with 
the reported (16) values of 420" C 
at 47% CeC13, 23% CaClz and 3-% 
LiCl. Such molten salt systems 
involving rare earth chlorides with 
alkali or alkaline earth chlorides are 
of interest in the removal of rare 
earth impurities from Pu. 

Such simple polynomial models are 
based upon regular solution theory 
which assumes approximately 
random mixing. Experience has 
shown that good results are 
obtained for simple alloys and for 

common-anion or common-cation molten salt solutions in which mixing interactions are relatively weak. 
For liquids with strong interactions, however, significant short-range ordering occurs, and more 
sophisticated models must be used. 

SHORT-RANGE ORDERING 
In the modified quasichemical model (17-19, 2, 3), the exchange of nearest-neighbour pairs in a binary 
system is considered according to : 

The energy for this reaction is (w - v T ) ,  If (w - 7 T )  is very negative, then (A - B) pairs are favoured. 
A (( quasichemical N equilibrium constant can be written for reaction (3) : 

( A - A )  + ( B - B )  = 2 ( A - B )  (3 ) 

KAB = X j B I X A A  XBB =4exp[-(w-vT)lRT] (4) 

where is the fraction of total nearest-neighbour pairs which are ( i - j ) pairs. When (w - 77 T) is 
very negative, the resultant expression for the Gibbs energy of the system goes through a sharp minimum 
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at X, = X, = 0.5 (2, 3, 17). In order to provide more flexibility in optimizing data, (a - 77 T )  can be 
expanded as : 

where w, and q, are the model parameters. If the minimum in the Gibbs energy is observed at a 
composition other than XA = XB = 0.5, this can be accommodated in the model by an appropriate choice 
of the ratio of coordination numbers ZdZA, . For example, if the minimum is near XB = 1/3, then 

( W - v T ) = ( o o - q O T ) + ( w , - ~ ,  T ) X , + ( a 2 - v 2 T ) X i  +... ( 5 )  

Calculated (14) Fe-U-Zr liquidus surface assuming no solid 
solution between FelZr and Fe2U (T in "C) 

0 2 -  + 0 0  = 2 0 '  

The quasichemical model for short-range 
ordering has been applied with success to 
ordered liquid alloys and to molten metal 
sulphide solutions. Much success has also 
been achieved for silicate melts and glasses. 
In a binary silicate, AOx-SiOz ( A = Ca, 
Mg, Na, . . .), the tendency to short-range 
ordering can be identified with the tendency 
to form SO:- ions in basic solutions, or 
with the break-up of the silicate network in 
acid solutions, and the resultant formation 
of second-nearest-neighbour (A-Si) pairs. 
An (Si-Si) pair can be considered to be 
joined by a doubly-bonded (network) 
oxygen, an (A-A) pair is a pair of cations 
separated by an 02+ ion, and an (A-Si) pair 
represents an oxygen bonded to one Si. 
Hence, the quasichemical reaction (3) is 
applied for second-nearest-neighbour pairs. 
This is related to the well-known 
equilibrium among free, singly-bonded and 
doubly-bonded oxygen: 

and is also closely related to (( cell D models of silicate melts (20) 

As example, the calculated optimized (21) phase diagram of the CaO-SiO2 system is shown in Fig. 5 .  
Only 6 parameters were required in Eq ( 5 )  to reproduce, within error limits, the measured phase diagram, 
and all other thermodynamic data such as activities in the liquid. 

Once several binary systems have been optimized in this way, the quasichemical model can be used to 
predict the thermodynamic properties of multicomponent slags and glasses by assuming that the values of 
K,, in Eq (4) for the multicomponent solution are equal to their values in the binary systems at the same 
values of X, /X, or XB0, . (For details, see ref (22)) The phase diagram of the CaO-Al203-Si02 system, 
calculated (22) in this way, with the addition of two additional small ternary parameters, is shown in 
Fig. 6. Agreement with measured liquidus temperatures, as well as with liquid activity measurements, is 
within error limits. 

The quasichemical model has been applied systematically to the optimization of a large number of oxide 
systems to develop the F*A*C*T slag/glass databases for the oxides of Al, B, Ca, Cr(II), Cr(III), 
Fe(II), Fe(III), Mg Mn, Na, Pb, Si, Ti(III), Ti(IV), Zn, Zr. At the same time, optimized databases have 
been developed for solid oxide solutions (spinels, ilmenites, olivines, perovskites, etc.). 

This database has been used to calculate equilibrium crystallization (liquidus) temperatures for 
1 5-component (Na~0~-B~O~-Si0~-Li20-Ca0-Mg0-Fe0-Fe~O~-Al~O~-ZrOCrO-Cr~0~-Mn0-Ni0-Ti0~) 
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sodium borosilicate glasses of interest in nuclear waste vitrification. A comparison of predicted liquidus 
temperatures with measurements (23) on 80 glasses of various compositions is given in Fig. 7 (24). 
Depending on the composition, the calculated .primary crystalline phases include zirconia, zircon, silica, 
anorthite, hematite, olivine, llithium silicate, lithium aluminum silicate, sodium zirconium silicate, 
Na2Ca3Si6016, albite and Mg~B03 as well as clinopyroxene (NaFeSiz06-CaMgSiZO6), corundum 
(Cr203-Fe203-A1203) and ~azCazSi309-Na4CaSi309) solid solutions. The average deviation in Fig. 7 is 
32". 

C F x A U C x T 1  
2200 

For liquid ReCb-ACl solutions where 
Re=rare earth and A is a large alkali cation 
(K, Rb, Cs), the Gibbs energy curves pass 2000 

1000 

1600 

1400 

1200 
0.0 0 . i  0 . 2  0.3 0 . 1  0 . 5  0 . 6  0 . 7  0.8 0.9 1.0 

through relatively sharp minima near 
XRcC,, = 0.25 (&ReC&), indicating 
short-range ordering about this composition. 
The modified quasichemical model can be 
used for these solutions, with Z R ~  IZA = 3. 

cao H o l e  fraction S102 Si02 

Calculated (21) optimized CaO-Si02 phase diagram and 
comparison with selected experimental points 

SOLUTION OF SOj, Pod,  S AND HALIDES IN SLAGS/GLASSES 

Reddy and Blander (25) proposed a simple model, later modified by Pelton et al (26), which has proven 
successfil in predicting the solubility of S2- ions in oxide slagslglasses. It is assumed that S2- ions 
substitute nearly ideally for 02' ions and for SiOl groups in the solution. The model can be very simply 
adapted to permit the calculation of the solubility of other anions (SO:-, C1', I', PO:- , OK) by assuming 
ideal substitution for 0'- ions and Si04 groups. For example, under oxidizing conditions sulphur 
dissolution as sulphate can be written: 

02- 4- so, = so:- (7) 

Sulphate solubilities at a given SO3 partial pressure can thus be predicted from a knowledge only of go of 
the pure sulphates (NazS04, CaS04, etc.) and of the activities of the oxides (NazO, CaO, etc.) in the 
solution (which are given by the quasichemical model database) with no adjustable parameters. 
Calculated (24) solubilities for SiO~-CaO-Na~O-(Al~O~-MgO) glasses are compared with experimental 
values (27) in Table 2. Similarly good agreement has been found (24) with measurements of sulphate 
solubilities of other authors for many other glass compositions. Quite good agreement for the solubility 
of phosphate and chloride in oxide glasses was also obtained (24). Fluoride and iodide solubilities could 
also be reproduced (24)) although in these cases a Henrian activity coefficient had to be introduced as an 
adjustable parameter. 

The solubilities of sulphate, phosphate and halides in glasses are important in the vitrification of nuclear 
wastes, since separate undesirable salt phases will form if the solubility limits are exceeded. The model 
outlined here can also be extended to the dissolution of HzO in oxide slags/glasses. 

SUBLATTICE MODELS 
The sublattice concept was first developed extensively for molten salt solutions (28). The cations are 
assumed to form a solution on a cationic sublattice, while the anions form a separate solution on an 
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anionic sublattice. Interactions between ions on the same sublattice are modeled by the excess terms in 
the common-ion systems (e.g. LiCI-NaCI, NaCI-NaF), while interactions between ions on different 

sublattices are modeled through the 
Gibbs energy of exchange reactions, such 
as : 

LiCl + NaF = NaCl + LiF 
AG = + SZiF - S& - gfic1 

For a description of the model for molten 
salts, see (29). The model has been used 
to develop an optimized F*A*C*T 
database for Li, Na, K, Rb, Cs, Mg, 
CaR, CI, Br, I, OH, NO,, CO3, SO4 and 
other molten salt solutions as well as for 
the associated solid solution phases. 
The sublattice concept has also proven 
very successful in modeling the 
thermodynamics of ceramic phases such 
as spinels in which the tetrahedral sites 
constitute one sublattice and the 
octahedral sites another. Through use of 

Fin. 6 Calculated ( 2 2 )  optimized Ca0-AI2O3-SiO2 liquidus 
surface (T in "C) 

the very usehl ((Compound Energy 
Formalism )) (30-32), the same mathematical formalism can be used for these solutions as is used for salt 
solutions. The sublattice model and the Compound Energy Formalism have also been applied, mainly by 
the Thermocalc group, to the development of extensive databases for interstitial solutions and for 
intermetallic phases. 

DISCUSSION 
For the successful development of a 
thermodynamic database for a multicomponent 
solution, the choice of a model which correctly 
reflects the structure of the solution is essential. 
Models are now well developed to treat solutions 
of alloys, molten salts, oxide slagdglasses, 
ceramic phases, etc. Furthermore, Gibbs energy 
minimization software exists to perform 
equilibrium calculations in multiphase, 
multicomponent solutions using data from these 
databases. In order to render the present 
thermodynamic database computing systems more 
useful in nuclear thermodynamics, future 
developments should focus upon the inclusion of 
more components by critical evaluation and 
optimization of data. For example, to model the 
molten oxide phase resulting during a meltdown 

1100- 

1000 - 

0 

R. 
d 
\ 900- 

800 - 

700 i 1 I ( I ~ I ~  

900 1000 1100 700 800 
TCLllCfC 

Fig. 7 Calculated (24)  versus experimental ( 2 3 )  
accident by reaction of the core with concrete, it 

as many 
other oxides as components to the slag database. 

be necessary to add 'OZ as crystallization (liquidus) temperatures for 
15-component nuclear waste disposal glasses.  
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Table 2 

Compared t o  Measurements of Papadopoulos (27)  

Calculated SO3 Solubi l i t ies  in  S i 0 ~ - C a 0 - N a ~ 0 - ( A 1 ~ 0 ~ - M g O )  Glasses at Pso, = 0.01 atm 

1370 

1373 
1397 
1403 
1427 
1433 
1451 
1463 
1483 

sio, 

0.721 
0.722 
0.741 
0.707 
0.716 
0.663 
0.667 
0.686 
0.778 
0.778 

0.663 
0.660 
0.869 
0.677 
0.669 
0.660 
0.665 
0.666 

0.002 
0.001 
0.001 
0.001 
0.001 
0.002 
0.002 
0.002 
0.001 
0.001 

0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 

Mole fractions 1 SO,(mole fraction) 

CaO I MgO 

0.136 0.00 

0.089 0.00 
0.200 0.00 
0.193 0.00 
0.196 0.00 

0.144 0.00 
0.090 0.00 
0.144 0.00 

0.196 0.00 

0.194 0.00 
0.187 0.00 
0.192 0.00 
0.201 0.00 
0.194 0.00 
0.199 0.00 

0.142 o.oa 

0.194 0.00 

0.198 o.oa 
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