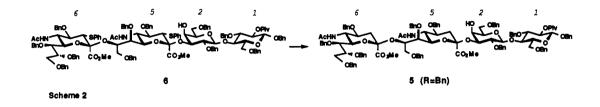
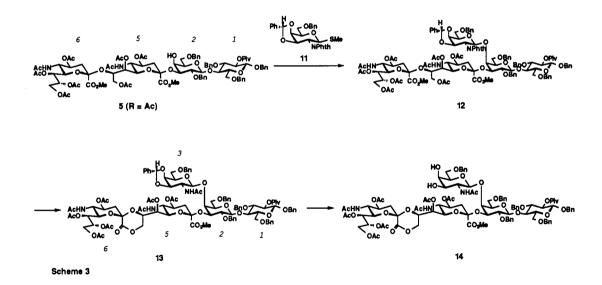

## Experiments directed towards synthesis of complex glycosphingolipids: Ganglio-ganglioside GQ1b<sup>1</sup>

Shigeki Nunomura<sup>a)</sup>, Yuji Matsuzaki<sup>a)</sup>, Yukishige Ito<sup>a)</sup>, and Tomoya Ogawa<sup>a</sup>,b)

a) The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-01 Japan; b) Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113 Japan

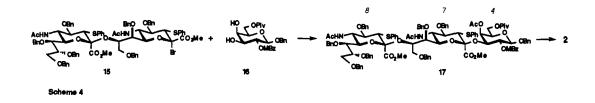

<u>Abstract</u>: Synthesis of a properly protected octasaccharide 18 which could be regarded as a reasonable precursor for the synthesis of GQ1b 1 was carried out in a stereo- and regio-controlled manner.

Tetrasialo ganglio-ganglioside GQ1b 1 was first isolated in 1967 from human brain<sup>2</sup> and then in 1972 from fish brain<sup>3</sup>. The structure of 1 was characterized around 1980 through chemical and enzymic degradation<sup>4</sup> as well as by Mass spectral data<sup>5</sup>. The trophic effect of GQ1b on the nervous system has been shown by employing human neuroblastoma cell line<sup>6</sup>. Since structurally most simple ganglioside GM<sub>3</sub> was synthesized for the first time in 1985<sup>7</sup>, more efficient strategies for the synthesis of ganglio-gangliosides have been developed<sup>8</sup>. A total synthesis of GQ1b, however, still remains to be accomplished. In this paper, we highlight successful synthesis of a properly protected octasaccharide derivative 18 which may be regarded as a key intermediate for further conversion into GQ1b.

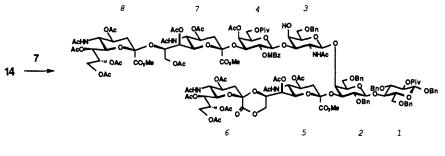



Scheme 1 (MBz = 4-Me-C<sub>6</sub>H<sub>4</sub>CO, Piv = tBuCO, Bn = CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)

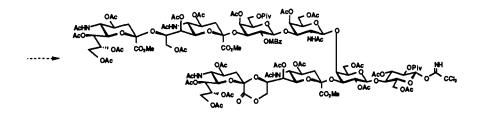
Aiming at a convergent-type synthesis of GQ1b 1, strategic bond disconnection was planned as shown in scheme 1 which led to design completely protected building blocks 2, 3, 4, and 5. It is to be noted that 4-methylbenzoyl and pivaloyl groups at O-2 of monosaccharide residue 4 and 1 in compounds 2 and 5, respectively, are required to serve as a stereocontrolling auxiliary<sup>9</sup>.




In order to study the reactivity of O-4 at residue 2 of the building block 5, first we prepared 5 [R=Bn, R<sub>F</sub> 0.37 in 4:1 PhMe-Me<sub>2</sub>CO;  $\delta_{\rm H}$  5.107 (dd, 8.0 and 9.5 Hz, H-2<sup>1</sup>), 3.748 and 3.510 (2s, 2 x OMe), 2.816 and 2.398 (2dd, 4.4 and 12.8 Hz, H-3eq<sup>5,6</sup>), 1.863 and 1.708 (2s, 2 x Ac), 1.104 (s, tBu)] from known compound 6<sup>10</sup> in 3 steps (i Ph<sub>3</sub>SnH, AIBN in PhH, ii NaOMe, MeOH-PhMe, iii CH<sub>2</sub>N<sub>2</sub> in 39% overall yield). All of the attempted glycosylations of 5 (R=Bn) as well as 6 with 3 (X=SMe, Br, F, and OCNHCCl<sub>3</sub>) in our hands occurred at NHAc groups linked to either residue 5 or 6 but not at OH group of residue 2 of 5 and 6, resulting in the formation of only acid labile imidates.




In order to lower the nucleophilicity of NHAc groups in compound **5** (R=Bn) toward glycosyl donors, we had to change the protective group of sialic acid residues from benzyl to electron withdrawing acetyl groups. According to this scenario, we studied compound **5** (R=Ac) as a glycosyl acceptor. To our delight, the glycosylation of **5** (R=Ac, ref 11) with **11** went smoothly<sup>12</sup> in the presence of PhSeOTf in CH<sub>3</sub>CN to give an 89% of **12**:  $[\alpha]_D$  +6.7° (c 0.6, CHCl<sub>3</sub>); R<sub>F</sub> 0.43 in 20:1 CHCl<sub>3</sub>-MeOH;  $\delta_H$  6.235 (s, CHPh), 5.306 (d, 8.8 Hz, H-1<sup>3</sup>), 2.699 and 2.671 (2dd, 4.4 and 12.8 Hz, H-3eq<sup>5,6</sup>), 1.744 (t, 12.8 Hz, H-3ax<sup>5,6</sup>), 1.197 (s, tBu). Having successfully carried out a chain elongation at O-4 of residue 2 of


compoun 5, N-phthaloyl function of the protected pentasaccharide 12 was then converted into N-acetyl group in 4 steps (i LiI-Py, ii NH<sub>2</sub>NH<sub>2</sub>-H<sub>2</sub>O, iii Ac<sub>2</sub>O-MeOH, iv CH<sub>2</sub>N<sub>2</sub>, 95% overall) to give 13:  $[\alpha]_D$  -5.5° (c 0.9, CHCl<sub>3</sub>); R<sub>F</sub> 0.33 in 5:3 Me<sub>2</sub>CO-hexane;  $\delta_H$  6.276 (s, *CHPh*), 5.117 (dd, 8.4 and 9.2 Hz, H-2<sup>1</sup>), 3.996 (s, *OMe*), 2.242 (dd, 4.7 and 13.5 Hz, H-3eq<sup>5</sup>or <sup>6</sup>), 1.789 (t, 12.8 Hz, H-3ax<sup>5</sup>), 1.169 (s, tBu). Treatment of 13 with 4:1 AcOH-H<sub>2</sub>O afforded 87% of 14 which is ready for further chain elongation at O-3 of residue 3. Compound 14 had  $[\alpha]_D$  -5.5° (c 0.3, CHCl<sub>3</sub>); R<sub>F</sub> 0.33 in 19:1 CHCl<sub>3</sub>-MeOH;  $\delta_H$  5.200 (ddd, 5.5, 11.3 and 16.5 Hz, H-4<sup>6</sup>), 5.135 (dd, 8.1 and 9.2 Hz, H-2<sup>1</sup>), 5.024 (ddd, 5.1, 12.1 and 16.8 Hz, H-4<sup>5</sup>), 2.346 (dd, 5.5 and 14.0 Hz, H-3eq<sup>6</sup>), 2.240 (t, 14.0 Hz, H-3ax<sup>6</sup>), 2.196 (dd, 5.1 and 14.3 Hz, H-3eq<sup>5</sup>), 1.716 (t, 14.3 Hz, H-3ax<sup>5</sup>), 1.170 (s, tBu).



The building block 2 was prepared<sup>10</sup> starting from 15 (ref.10). Glycosylation of 16 with 0.66 equivalent of 15 in the presence of Hg(CN)<sub>2</sub>-HgBr<sub>2</sub>-MS4A in CCl<sub>4</sub> and subsequent acetylation gave 33% of 17:  $\delta_{\rm H}$  5.311 (d, 3.4 Hz, H-4<sup>4</sup>), 3.421 and 2.963 (2d, 10.3 and 10.6 Hz, H-3<sup>7,8</sup>). Further conversion of 17 into 2 was achieved in 4 steps (i Ph<sub>3</sub>SnH, AIBN in PhH, ii H<sub>2</sub>, 10% Pd-C in MeOH, iii Ac<sub>2</sub>O-Py-DMAP, iv MeSSnBu<sub>3</sub>-SnCl<sub>4</sub>, 17% overall). Compound 2 had R<sub>F</sub> 0.38 in 20:1 CHCl<sub>3</sub>-MeOH; [ $\alpha$ ]<sub>D</sub> +29.3° (c 0.4







19

Scheme 5

in CHCl<sub>3</sub>);  $\delta_{\rm H}$  4.864 (d, 9.6 Hz, H-1<sup>4</sup>), 3.828 and 3.796 (2s, 2 x OMe), 2.365 (s, C<sub>6</sub>H<sub>5</sub>Me), 2.221, 2.183, 2.166, 2.165, 2.137, 2.047, 2.046, 2.045, 1.956, 1.915 and 1.829 (11s, 10 x Ac and SMe), 1.202 (s, tBu). Crucial coupling of 14 with 1 equivalent of 2 in the presence of PhSeOTf in (CH<sub>2</sub>Cl)<sub>2</sub> afforded 16% of the designed octasaccharide 18 along with 67% of recovered pentasaccharide 14. It is to be noted that reaction of trichloroacetimidate corresponding to 2 with 14 in the presence of either TMSOTf or BF<sub>3</sub>•OEt<sub>2</sub> in the same solvent failed completely. Stereochemistry of the glycosylation was confirmed by the following <sup>1</sup>H NMR of the compound 18: R<sub>F</sub> 0.28 in 1:2 CHCl<sub>3</sub>-THF;  $\delta_{\rm H}$  5.395 (dd, 7.7 and 9.5 Hz, H-2<sup>4</sup>), 4.801 (d, 7.7 Hz, H-1<sup>4</sup>), 3.800, 3.785, and 3.785 (3s, 3 x OMe), 2.368 (s, PhMe), 1.177 and 1.162 (2s, 2 x tBu). The regiochemistry of the coupling was confirmed by <sup>1</sup>H NMR of the acetate of 18 which contained a deshielded signal for H-4<sup>3</sup> at  $\delta$  5.420 (d, 3.7 Hz). The Compound 18 could be regarded as a plausible precursor for the imidate 19.

In summary, a first synthesis of properly protected octasaccharide 18 which was regarded a key intermediate for the synthesis of GQ1b was achieved by controlling the reactivity of OH-4 of residue 2 relative to NHAc of residues 5 and 6 in compound 5 by changing the protective groups of hydroxyl functions from benzyl to acetyl. Crucial coupling between pentasaccharide block 14 and trisaccharide block 2 was finally executed in the presence of thiophilic promoter.

## REFERENCES

- 1. Part 99 in the series "Synthetic Studies on Cell-Surface Glycans". For part 98, see Y.Nakahara, H. Iijima, and T. Ogawa, *Tetrahedron Lett.*, submitted.
- 2. E. Klenk, L. Hof, and L. Georgias, Hoppe-Seyler's Z. Physiol. Chem. 348, 149-166 (1967).
- 3. I. Ishizuka and M. Wiegandt, Biochem. Biophys. Acta 260, 279-289 (1972).
- 4. S. Ando and R. K. Yu, J. Biol. Chem. 254, 12224-12229 (1979).
- 5. P. Fredman, J.-E. Mansson, L. Svennerholm, K. A. Karlsson, I. Pascher and B. E. Samuelsson, *FEBS Letters* 110, 80-84 (1980).
- 6. S. Tsuji, T. Yamashita, Y. Matsuda, and Y. Nagai, Neurochem. Int. 21, 549-554 (1992).
- 7. M. Sugimoto and T. Ogawa, Glycoconj. J. 2, 5-9 (1985).
- See for example, A. Hasegawa, H. Ishida, T. Nagahama, and M. Kiso, J. Carbohydr. Chem. 12. 703-718 (1993).
- S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, *Tetrahedron Lett.* 29, 4097-4100 (1988); S. Nunomura and T. Ogawa, *ibid.* 29, 5681-5684 (1988).
- 10. Y. Ito, S. Nunomura, S. Shibayama, and T. Ogawa, J. Org. Chem. 57, 1821-1831 (1992).
- 11. Y. Ito, M. Numata, M. Sugimoto, and T. Ogawa, J. Am. Chem. Soc. 111, 8508-8510 (1989).
- Y. Matsuzaki, S. Nunomura, Y. Ito, M. Sugimoto, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.* 242, C1-C6 (1993).