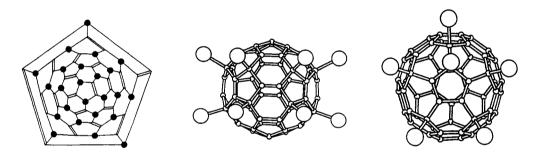
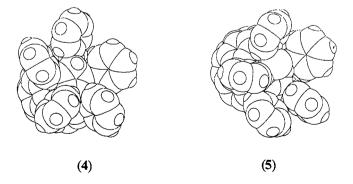

The structure and reactivity of C₆₀

Harold W Kroto, Roger Taylor and David R M Walton

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ UK

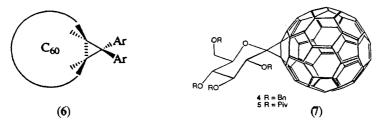
Abstract: C_{60} contains thirty double bonds endocyclic to the twenty adjacent hexagons and exocyclic to the twelve isolated pentagons which comprise the highly symmetric, I_h , structure. As a result the cage exhibits chemical properties commensurate with those of an electron-deficient polyene.


Evidence for the existence of C_{60} (Buckminsterfullerene) was first obtained in 1985 (1) and macroscopic quantities of this all-carbon molecule, together with small amounts of the higher fullerene C_{70} , became available five years later by solvent extraction and chromatographic separation (2) of the sooty deposit resulting from the resistive heating and vaporisation of graphite (3). All carbons in C_{60} are chemically equivalent, as revealed by ¹³C n.m.r. spectroscopy (2), however the structure contains thirty localised 'double' (ca.1.39 Å) and sixty 'single' (ca.1.44 Å) bonds; the double bonds are arranged exocyclic to the pentagons (4).


 C_{60} displays typical electron acceptor properties. For example, it exhibits six reversible one electron reductions in solution (5), commensurate with the filling of a triply degenerate low lying t_{1h} LUMO. Group 1 and 2 metal salts of C_{60} are superconducting with transition temperatures (T_c) 33 K for RbCs₂C₆₀ (6) and 8.4 K for Ca₅C₆₀ (7). Electroreduction of C₆₀ in the presence of [Ph₄P⁺][Cl] yields the mixed salt [Ph₄P⁺]₃[C₆₀] [Cl]₂ (8), whilst the one-electron reductant, Cr^{II}(tpp) (1), gives [(1)⁺][C₆₀][THF]₃. In the latter, THF stabilises the Cr^{III} oxidation state through solvation, whereas the Cr^{III}-containing neutral salt is favoured in toluene (9).

The C_{60} cage is susceptible to nucleophilic attack, but the degree of addition is difficult to control. For example the mass spectrum of $C_{60}Me_n$, obtained by quenching C_{60}^{6-} with MeI, reveals the presence of species up to n=24, with $C_{60}Me_6$ and $C_{60}Me_8$ dominant (9). By contrast, careful treatment of C_{60} with one equivalent of eg. t-BuLi (10) followed by protonation yields two mono-adducts, $C_{60}RH$ [(R=t-Bu, (2) and (3)]; (2) slowly rearranges to the thermodynamically favoured isomer (3) which contains no pentagonal double bond (11).

Liquid bromine reacts with C_{60} to give $C_{60}Br_{24}$ in which all bromines are equivalent (12) (Schlegl diagram: 24 is the maximum number of bromines which can be attached to the cage so as to avoid occupation of adjacent sites). Bromination in CS_2 yields $C_{60}Br_8$, whereas in benzene or CCl_4 $C_{60}Br_6$ is formed (13). Treatment of C_{60} with ICl gives $C_{60}Cl_6$ which is isostructural with the bromine analogue (14).


 C_{60} reacts with benzene in the presence of Br_2 and $FeCl_3$ to give mixed products including $C_{60}Ph_6$ (15), $C_{60}Ph_5H$ (4) and $C_{60}Ph_{12}$ (16), based upon mass spectral evidence. Reaction of $C_{60}Cl_6$ with benzene and $FeCl_3$ gives $C_{60}Ph_5Cl$ (5) which is readily reduced to (4) (17).

Benzyl radicals react with C_{60} to give $C_{60}(CH_2Ph)_n$ (n \leq 15) (18). E.s.r. spectra reveal the presence of allyl and cyclopentadienyl sites on the cage, a result which may have a bearing on possible intermediates in the bromination of C_{60} .

 $R = PhCH_2$

Cycloadditions of dipoles and dienes (Diels Alder reaction) to C_{60} have proved to be a particularly fruitful area of research and offer what is arguably the best way to date of developing the organofunctional chemistry of C_{60} . For example, one or more (up to six) diaryldiazomethane units add across the interpentagonal bonds to give pyrazolines which spontaneously lose N_2 to generate the diarylhomofullerene, $C_{60}CAr_2$ (6) (19). This strategy has been employed to prepare C_{60} containing polymers (20) and, using a diazirine (carbene precursor) to attach a protected glycoside residue indirectly to the cage (7) (21).

Retro-Diels Alder processes can often be troublesome. For example, the cyclopentadiene adduct of C_{60} decomposes upon heating unless the double bond in the addend is saturated (22). With diene (8), subsequent CO loss from the initial product of cycloaddition leads to formation of a stable aromatic ring (9) (23).

$$\begin{array}{c}
Me \\
Ph \\
Col
Ph \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Ph \\
Me
\end{array}$$

$$\begin{array}{c}
Me \\
Ph \\
Me
\end{array}$$

Transition metals have played an important role in the development of C_{60} chemistry. Reaction with OsO_4 in the presence of 4-t-butylpyridine (L) gave the osmyl ester $C_{60}[OsO_4L_2]$ (10), the first C_{60} derivative to be fully characterised (24). The structures of five isomeric bis-osmyl esters have been deduced from their n.m.r. spectra (25). The platinum complex

2094 H. W. KROTO et al.

 C_{60} Pt(PPh₃)₂ (11) exhibits the properties commonly associated with eta-2 compounds (26); hexa-adducts, C_{60} [M(PEt₃)₂]₆ (M = Ni, Pd and Pt), with the metals disposed octahedrally around the cage, have been prepared (27).

$$\begin{array}{c|c}
\hline
C_{60} & O & II \\
\hline
C_{60} & O & II \\
\hline
C_{60} & O & PPh_3 \\
\hline
PPh_3 & PPh_3
\end{array}$$
(10)

REFERENCES

- 1. H.W. Kroto et al. Nature (London) 318, 162-163 (1985).
- 2. R. Taylor et al. J.Chem.Soc., Chem.Commun. 1423-1425 (1990).
- 3. W. Krätschmer et al. Nature (London) 347, 354-358 (1990).
- 4. W.I.F. David et al. Nature (London) 353, 147-150 (1991).
- 5. Q. Xie et al. J.Am.Chem.Soc. 114, 3978-3980 (1992).
- 6. T. Tanigaki et al. Nature (London) 352, 222-223 (1991).
- 7. A.R. Kortan et al. Nature (London) 355, 529-530 (1992).
- 8. P.-M. Allemand et al. J.Am.Chem.Soc. 113, 1780-2781 (1991).
- 9. H. Schwarz Angew. Chem. Int. Ed. Engl. 31, 293-297 (1992).
- 10. A. Hirsch et al. Angew. Chem. Int. Ed. Engl. 31, 766-768 (1992).
- 11 P.J. Fagan et al. J.Am.Chem.Soc. 114, 9697-9699 (1992).
- 12. F.N. Tebbe et al. Science 256, 822-825 (1992).
- 13. P.R. Birkett et al. Nature (London) 357, 479-481 (1992).
- 14. P.R. Birkett et al. J. Chem. Soc., Chem. Commun. 1230-1232 (1993).
- 15. S.H. Hoke et al. Rapid Commun. Mass Spectrosc. 36, 1309-1310 (1992).
- 16. R. Taylor J. Chem. Soc., Chem. Commun. 667-668 (1992).
- 17. A.G. Avent et al. J.Chem.Soc., Chem.Commun. in press.
- 18. P.J. Krusic Science 254, 1183-1185 (1991).
- 19. F. Wudl Acc. Chem. Res. 25, 157-161 (1992).
- 20. S. Shi et al. J.Am.Chem.Soc. 114, 656-657 (1992).
- 21. A. Vasella et al. Angew. Chem. Int. Ed. Engl. 31, 1388-1390 (1992).
- 22. M.F. Meidine et al. J. Chem. Soc., Chem Commun. 1342-1344 (1993).
- 23. Y. Rubin et al. J.Am. Chem. Soc. 115, 344-345 (1993).
- J.M. Hawkins et al. Science 252, 312-314 (1991); J.M. Hawkins Acc. Chem. Res. 25, 150-156 (1992).
- 25. J.M. Hawkins et al. J.Am.Chem.Soc. 114, 7954-7955 (1992).
- 26. P.J. Fagan et al. Science 252, 1160-1161 (1991).
- 27. P.J. Fagan et al. J.Am. Chem. Soc. 113, 9408-9409 (1991).