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Abstract 

The s t ructural  properties of cyclodextrins a n d  of l inear  mal -  
tooligosaccharides of chain lengths  5 t o  20 a r e  discussed. The 
la t ter  a re  prepared by enzymatic synthesis  and  character ized 
by circular dichroism spectroscopy. The crystal s t ruc ture  of a 
maltohexaoside a n d  of cyclodextrin inclusion compounds are 
discussed in t e r m s  of polyiodide complexation a n d  hydrogen 
bonding. 

Although s ta rch  is one of the most abundant  biological molecules ,  
details  of its three-dimensional s t ruc ture  a r e  still  not available. The 
reason is that s ta rch ,  which  consists of l inear  amylose a n d  of the 
branched amylopectin, cannot be crystallized because it has no  well-  
defined, globular molecular s t ruc ture .  I t  has only been  possible t o  
d r a w  fibres of amylose,  a n d  X-ray diffraction pa t te rns  t a k e n  from 
t h e s e  fibres have  been interpreted in t e r m s  of a right handed  double- 
helical s t ruc ture  w h e r e  two parallel s t rands  a r e  in te r twined  (1). This 
model, However, is still u n d e r  dispute and  has recently b e e n  reinter-  
preted in t h e  form of a left-handed double helix us ing  new informa- 
tion based on  electron diffraction and  X-ray powder da ta  (2 ) .  

If smal l  molecules like iodine, alcohols or dimethylsulfoxide a re  added 
to an aqueous solution of amylose,  inclusion compounds a r e  formed 
w h e r e  amylose is wound in a left-handed single s t randed  helix called 
V-amylose. It has a central  cavity of about 5A into which  small mo- 
lecules c a n  be included. Structural  models for these complexes a re  
again based on X-ray fibre diffraction pat terns ,  a n d  consequently the- 
re  a r e  still uncer ta int ies  concerning details  of the three-dimensional 
s t ructure  of V-amylose (ref .  3). 

The main reason for t h e s e  uncertaint ies  is  that in the fibres,  amylose 
molecules a r e  only in quasi-crystalline order,  a n d  the few obtainable 
X-ray reflections a re  insufficient to derive phase angles  a n d  to calcu- 
late electron density m a p s .  Their interpretation relies heavily on mo- 
del building which ,  per se;  is biased by the experimental is t  a n d  c a n  
only subsi tute  for crystallographic methods  i f  no  crystals a p  available. 
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In one of our research  projects, we intend to elucidate the s t ruc ture  
of amylose at grea te r  detail .  W e  have  worked out procedures to pre- 
pare oligosaccharides of defined chain lengths  which  c a n  be u s e d  for 
crystallization exper iments  ( refs .  4 ,  5). In a first X-ray s t ruc ture  ana- 
lysis, w e  have  determined the conformation of a malto-hexaoside in 
complex with polyiodide (ref .  6). It forms a lef t -handed,  antiparallel  
double helix which  is clearly different with respect  to V-amylose or 
to the s ta rch  double helix. In addition, we have  looked at cyclodextrin 
inclusion complexes,  which  c a n  be considered as models  for V-amy- 
lose. They crystallize readily in a form suitable for X-ray a n d  e v e n  
neutron diffraction experiments .  

In the following, we describe our procedures to synthesize oligo-sac- 
char ides  in quant i t ies  that a r e  sufficient for crystallization experi-  
m e n t s ,  the i r  properties,  the crystal s t ruc ture  of t h e  maltohexaoside/ 
polyiodide complex, a n d  of cyclodextrin inclusion complexes,  

THE PREPARATION OF MALTOOLIGOMERS OF DEFINED CHAIN LENGTHS 

In initial a t tempts  to synthesize large quant i t ies  of l inear  maltooligo- 
m e r s ,  we used  the s tepwise elongation of a s t a r t e r  molecule by pota- 
to phosphorylase or muscle  phosphorylase B. As s t a r t e r s ,  we u s e d  
p-nitrophenyl-a-D-maltopentaoside, which  is commercially available 
a n d  proved to have  the  opt imum chain length  for the phosphorylases. 
The p-nitrophenyl-moiety served  as a convenient m a r k e r  due  t o  its 
absorption at 300nm. The reaction was optimized with respect  to s t a r -  
t e r  length,  pH-value, and  tempera ture .  We usually obtained a charak-  
teristic distribution of p-nitrophenyl-modified maltooligomers as s h o w n  
in Fig. 1, but we noticed with some batches that t h e  s t a r t e r  suffered 
from disproportionation, because the  minimum chain length  was not 
only t h e  p e n t a m e r  i f  w e  u s e d  malto-pentaoside as s ta r te r ,  but  also 
the corresponding t e t r a m e r ,  t r imer  a n d  dimer.  The reason for this 
appears  to be that t h e  enzymes w e r e  n o t  highly purified a n d  contai- 
n e d  an enzyme that disproportionates maltooligomers. The existence 
of this so-called D-enzyme was veryfied when w e  incubated t h e  
p-nitrophenyl-maltopentaoside with t h e  r a w  extract  of potato phos- 
phorylase. 

The synthesis  of maltooligomers wi th  phosphorylase finally proved not 
to be suitable for the production of large quant i t ies  because we h a d  
severe  problems with t h e  separat ion of the  individual molecules (Fig. 
1) by preparative HPLC. Consequently, w e  changed the method a n d  
u s e d  cyclodextrin-glucosyltransferase in the production of maltooligo- 
m e r s  of defined chain length (8). The advantage is that a suitable 
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Fig. 1 HPLC-profile of 4-nitrophenyl-a-D-maltooligomers syn- 
thesized with potato phosphorylase. Stationary phase : 
Hypersil APS-Z,5pm, acetonitrile/water linear gradient 
75:72. The numbers at  the peaks indicate the degree 
of polymerization (DP) of the oligomers. Taken from ref. 7. 

s t a r t e r  molecule is elongated by 6,7, or 8 glucoses,  depending on  the 
cyclodextrin ( a ,  0 or y)  that is u s e d  in this reaction. P-nitrophenyl-a- 
D- maltopentaoside a n d  unsubst i tuted maltopentaose w e r e  again sui- 
table starters, a n d  the reaction with a-cyclodextrin produced mainly 
the  respective u n d e c a m e r  a n d  heptadecamer,  a n d  smal l  amounts  of 
other chain lengths .  The reaction is followed by HPLC. If t h e  opt imum 
concentration of the desired products is obtained, u n u s e d  cyclodextrin 
is precipitated with tetrachloroethane. W i t h  p-nitrophenyl-substituted 
oligomers, the superna tan t  is applied t o  a column-containing B-cyclo- 
dextrin polymer, which  forms inclusion complexes with t h e  p-nitro- 
phenyl moiety and  serves  t o  separa te  t h e  different chain lengths .  A 
final preparative HPLC of the different fractions from this column 
produces pure p-nitrophenyl-substituted (and  unsubs t i tu ted)  maltooli- 
gomers  with defined chain lengths .  

CHARACTERIZATION OF THE INCLUSION PROPERTIES OF THE UNSUBSTITUTED 
MALTOOLIGOMERS OF DIFFERENT CHAIN LENGTHS 

In order to s tudy the inclusion formation of the obtained malto-  
oligomers, w e  used  gues t  molecules with absorption in the UV or 
visible par t  of t h e  spec t rum and monitored the inclusion by t h e  malto- 
oligomers with circular dichroism. In Fig. 2 ,  some of t h e s e  spec t ra  
a re  shown which  indicate that the affinity to the gues t  molecules  
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Fig. 2 Circular dichroism spectrum of 12/KI complexed by malto- 
oligosaccharides with increasing chain lengths (R. Herbst, 
(to be published). 

increases with increasing chain length. We assume that the malto- 
oligomers probably form helical structures in aqueous solutions which 
can accommodate the respective guest molecules in their cavity. This 
produces a local asymmetry which is detected by the circular dichro- 
ism. Comparison with cyclodextrin shows that the inclusion by linear 
maltooligomers has a lower affinity, in agreement with the more 
flexible structure of the linear maltooligomers relative to  the rigid 
structure of the cyclodextrins. 
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CRYSTAL STRUCTURE OF THE COMPLEX (p-nitrophenyl-a-D-maltohexaoside)z- 
Ba(13)z .27H20  

Numerous a t tempts  w e r e  m a d e  t o  crystallize the ser ies  of commer-  
cially available p-nitrophenyl-a-D-maltooligomers with cha in  lengths  
3-7. W e  did not use t h e  unsubst i tuted oligomers t o  avoid mutarotat ion 
of the reducing e n d  group. Based on  our experience with the cyclo- 
dextr ins ,  w e  did not only try to crystallize the pure p-nitrophenyl-a- 
D-maltooligomers from aqeous solution, but  we also added smal le r  
molecules like iodine/iodide, alcohols, fatty acids etc. ,  a n d  we tr ied 
a n u m b e r  of different sa l t s  of the iodides. One  of t h e s e  a t t e m p t s  was 
successful a n d  w e  obtained brown, single crystals of composition 
(p-nitrophenyl-a-D-maltohexaoside l2 -Ba(I, l2 .27H2 0 (ref .  6 ) .  

The space group of these crystals is  orthorhombic, P21212, a n d  unit 
cell constants  a r e  a=33.73, b=29.21, c=14.44A. More than 10.000 X-ray 
diffraction da ta  w e r e  collected a n d  the s t ruc ture  de te rmined  by a 
combination of Patterson a n d  Difference-Fourier methods  a n d  refined 
to R=0.092 for the 7590 reflections above 3u. The triiodide molecules  
are l inear a n d  arranged along the crystallographic c-axis as an infini- 
te zig-zag cha in  with interuni t  angles  from 121' to l66", s e e  Fig. 3. 

Fig. 3 Stereo view of the complex (p-nitrophenyl-a-D-maltohexa- 
oside),.Ba(I, l2 27H20 (Ref. 6). Shown are two asymmetric 
units along the crystallographic c-axis, water  molecules 
and Ba2+ are not drawn. 
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The s t ruc tures  of the t w o  molecules of p-nitrophenyl-a-D-maltohexao- 
side in the asymmetr ic  unit resemble cleaved cyclodextrins distorted 
in the form of lock-washers  with left-handed s c r e w - s e n s e ;  all the 12 
glucoses a r e  in the 4C1-chair form. Two lock-washers  in opposite 
directions a re  wrapped  around t w o  Is-ions to form a left-handed an- 
tiparallel double helix. This double helix is stabilized by v a n  der  
Waals interactions with the polyiodide cha in ,  as observed with polyio- 
dide complexes of amylose a n d  of cyclodextrins, a n d  by intramolecu-  
la r ,  in terresidue as wel l  as intermolecular O(2). - * - .O( 3' 1 hydrogen 
bonds. The glucoses in the cent res  of t h e  t w o  maltohexaoside mole- 
cules  a r e  more regularly a r ranged  than those at the ends .  They w e r e  
used  t o  construct mathematical ly  an amylose antiparallel  double helix 
with 2 t imes  8 glucoses per t u r n ,  a n d  a pitch height  of 18.64A. 

In t h e  crystal s t ruc ture ,  t h e  adjacent double helical  complexes related 
by the 2 , - s c r e w  symmetry along c a r e  a r ranged  s u c h  that an "infi- 
ni te"  double helix is formed. I t  is stabilized by stacking interact ions 
be tween the p-nitrophenyl groups,  by hydrogen bonded w a t e r  mole- 
cules  serving as intermolecular bridges, by interactions b e t w e e n  13- 
units, a n d  by coordination of Ba *+ t o  four different maltohexaoside 
molecules.  

All except one of t h e  27 water molecules in t h e  asymmetr ic  unit a r e  
in direct  hydrogen bonding contact with the double helix. There is a 
characterist ic systematic  hydration s c h e m e  s u c h  t h a t  glucose a toms 
0(2), O(3)  and/or  0(5) ,  O ( 6 )  chelate  w a t e r  molecules to form 5-mem- 
bered cyclic s t ruc tures .  This motif in glucose hydration is so sys tema-  
tic that it will probably occur in other  heavily hydrated crystalline 
amylose f ragments  a n d ,  above all ,  in aqueous solution. 

9t-Cvclodex t r i s  Po lviodide Comdereg we Good Models fsl: Starch-Iodine 
In the  complexes formed b e t w e e n  a-CD a n d  the Li+ a n d  Cd2+ salts of 
13-, t h e  a-CD molecules a re  s tacked like coins in a roll, a n d  the 
channel-like cavity is filled with polyiodide; the cations (and  w a t e r  
molecules) a r e  located b e t w e e n  the s tacks.  The polyiodide is dis- 
ordered (I, * I<)n in t h e  Li+-complex a n d  in the Cd2+ complex. 
The Iz, 1,- a n d  1,- units are closer together than v a n  der  Waals con- 
tac t s ,  suggest ing that there is considerable charge t ransfer  b e t w e e n  
them, in a g r e e m e n t  with the deep  blue to black color of t h e s e  com- 
plexes. Since the width  of the central  cavit ies in V-amylose a n d  in 
a-CD a r e  comparable,  we a s s u m e  that the polyiodide chain in blue 
starch-iodine is similar t o  that observed in the a-CD complexes (9). 

Cvclodextrins models understandiw hpdratioq phenome na.  
If cyclodextrins a r e  crystallized from pure w a t e r ,  they  form different 
hydrates depending on conditions. The most  preferred hydrates  a r e  
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a-CD.6H2 0, B-CD.11H2 0 a n d  y-CD.16H2 0. They feature n u m e r o u s  O-H,..O 
hydrogen bonds, which  form extended networks.  These w e r e  s tudied 
by neut ron  diffraction, so that the positions of the H-atoms could be 
determined with high precision a n d  permit ted to define all the hydro- 
g e n  bonds. 

The hydrogen bonds in t h e  a- a n d  y-CD hydrates  a r e  very wel l  de te r -  
mined  (10, 11). The a-CD ring of 6 glucoses is distorted s u c h  that one 
of the glucoses is rotated out of t h e  ring formed by the others .  This 
rotation is so severe  t h a t  the intramolecular,  interglucose hydrogen 
bonds 0(2) . . .0 (3 ' )  a r e  broken for this glucose, but  they  a r e  main ta ined  
for the other  glucoses. In y-CD, t h e s e  hydrogen bonds a r e  formed 
be tween all of the 8 glucoses. They obviously stabilize the circular 
s t ruc ture  of the cyclodextrins, which ,  as s h o w n  by circular dichroism 
m e a s u r e m e n t s ,  i s  l ess  rigid for t h e  a-CD than for the other  t w o  
cyclodextrins. 

In B-CD-11 H, 0, the intramolecular,  interglucose hydrogen bonds a r e  
all disordered, a n d  of type 0(2)-(1/2H)...(1/2H)-0(3'), Fig. 4. They 
w h e r e  called flip-flop hydrogen bonds, because they  c a n  be described 
as the sum of t w o  s t a t e s  which  a r e  in equilibrium (121, 

Since the  O(21, O(3)  hydroxyl groups a re  in hydrogen bonding contact 
with w a t e r  molecules which  a r e  also partly disordered, the flip-flop 
hydrogen bonds form extended chains .  If the B-DC.11 H 2 0  crystals a r e  
cooled, a phase transit ion occurs at 227K. Neutron diffraction d a t a  
collected below this tempera ture  showed that the flip-flops a r e  now 
ordered s u c h  that extended,  cooperative hydrogen bonds are formed 
in which  all the 0-H. - SO interactions point in the s a m e  direction 
(homodromic), 0-He * q0-H. - s0-H- * -0-H (13). Quasielastic neut ron  
scat ter ing s tudies  on crystalline B-CD.11 H2 0 have  provided fur ther  
evidence for the dynamic n a t u r e  of the flip-flop hydrogen bonds, a n d  
indicated that the jump rate  b e t w e e n  the t w o  states is of the order 
2-101* to 2 ~ 1 0 ~ ~  see-I  (14). 

As in (p-nitrophenyl-a-D-maltohexaoside l2 .Ba(I, .27H, 0, n u m e r o u s  
CD-glucose residues chelate  with w a t e r  molecules  or hydroxyl groups 
of neighbouring CD molecules hydrogen bonded t o  O(5) a n d  O ( 6 )  of 
the s a m e  glucose. I t  was s h o w n  by neut ron  diffraction d a t a  that 
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these chelated arrangements  represent  three-center  hydrogen bonds 
of the type 

H /O O(6)- ---- \ 
,o H 

.* 
0 ( 6 1 - H" 

or 

but never  "chains" O(6)-H- - -0-He .0(5) (ref.  15). 

Fig. 4 Section of the crystal structure of B-cyclodextrin-IlH,O 
at room temperature as  determined by neutron diffrac- 
tion (14). Light shading: fully occupied oxygen positions: 
dark shading: partially occupied oxygen positions: solid 
bonds: orientationally disordered O-H groups involved in 
flip-flop hydrogen bonds: curved double arrows indicate 
jumps between the two different flip-flop states. 
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