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The delta bond-an old story with a new twist 
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Abstract. The nature of the two electron 6-bond is examined in 
detail, with attention to the four states that constitute the 6 -  
manifold, viz., 'Al, (ground state), 3A2u, 'A2, and 'Al,*, in a species, 
M2X8"-, with D4, symmetry. The effects of increasing the M-M distance, 
twisting from D4, through D4 to D4d, and configuration interaction are 
then discussed. Experimental measurements of the lA1, - 3A2u 
separations in MO,C~,(P-P)~ complexes with twist angles between 17 and 
40" as well as CASSCF calculations for the model system. Mo2C14(PH3), 
are discussed. It is concluded that the 6-bond energy is 12 (Exp.) 
- 17 (theor.) kcal mol-l and the rotational barrier is 24.5 kcal mol-l. 

INTRODUCTION 

With the discovery of the quadruple bond in 1964 (ref. 1) the delta (6) bond became for 
,the first time a subject not only worthy of detailed theoretical attention but, more 
important, available for thorough and exacting experimental investigation. 

Even in the abstract the concept of a delta bond is not old. Bonds between a pair of 
metal atoms can be classified according to the number of nodal planes that contain the - 
internuclear axis: u (no plane), a (one 
plane), 6 (two planes), and so on. The 
first two are so well known that even 
students in introductory chemistry courses 
are made aware of them. On the other hand, 
prior to 1964 references to 6 bonds were 
rare indeed. The earliest reference (so far 
as I have found) occurred in a paper by 
Craig, Maccoll, Nyholm, Orgel and Sutton 
(ref. 2), who stated as one of their main 
conclusions that "6 -bonding, between two 
atomic %-orbitals, is unlikely to be of 
importance. '' 

Not too long after this, Figgis and Martin 
(ref. 3)  explicitly suggested that a very 
weak 6 interaction was likely to be 
responsible for the Uanomalous" magnetic 
behavior (antiferromagnetic coupling) 
between the two copper(I1) atoms in dicopper 
tetraacetate. In 1965, Hansen and 
Ballhausen (ref. 4) included it in their 
treatment of the over-all electronic 
properties (spectrum and magnetism) of 
dicopper tetraacetate. The Hansen and 
Ballhausen paper addressed for the first 
time in detail many of the essential 
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Fig. 1. A schematic view down the 
M-M axis of a M2X8 species, show- 
ing how the torsion angle, x ,  is 
defined. 

features of the probiem of 6 bonding as we have encountered it in our studies of 
quadruple bonds, even though they were dealing with what is, in certain respects, a 
quite different situation. The 6 interaction in Cu2(02CCH3), , with a metal-metal 
distance of B. 2.6 A is so weak that the lowest singlet and triplet states are 

1383 



1384 F. A. COlTON 

separated by only a few hundred wave numbers. In the quadruple bonds the 6 inter- 
action is much stronger, though still, compared to most other bonds, weak. 

Because, even at their strongest 6 bonds are still relatively weak, they cannot be 
easily understood by concepts usually employed for ordinary, strong electron pair bonds 
of the u (or even A )  type. There is, however, an advantageous side of this weakness, 
namely, that it enables us to observe, in isolable molecules of permanent stability, 
the limiting behavior characteristic of other bonds only under the ephemeral conditions 
where they have been stretched close to their dissociative limits. This is 
attributable to another special feature of 6 bonds, namely, their angle-sensitivity and 
our ability to control the angle. This affords us another opportunity, by a means 
other than dissociation, to see how a bond behaves as it approaches extinction. This 
type of opportunity is in principle possible for a A bond, but practical means for 
"angle-tuning" such bonds over a wide range have not yet been found. (Note a) 

The first subject of the remainder of this article will be a detailed description of 
the manifold of states arising from interaction of two atomic d6 orbitals as a function 
of the angle of rotation of one relative to the other. The theoretical aspects will 
then be further examined and finally we shall make a comparison of theory with 
experimental data. The theoretical problem has been specifically addressed before, 
first by a treatment of the 6 bond in eclipsed [RezC18]2- in a pioneering study by Hay 
(ref. 5) , and then in a calculation of the electronic states of this ion as a function 
of rotation angle by Smith and Goddard (ref. 6). Unfortunately, it is not for this 
system that experimental data on twisted molecules are available. 

The compounds in which angle tuning of the 6 interaction has been studied 
experimentally are those of types 1 and 2, where P and P-P represent PR, and 

- 1 - 2 
R2P(CH2)nPRz, and Br or I may be present in place of C1. In 1 the torsion angle, that 
is, the angle defined in Fig. 1 is zero, while there are compounds of type 2 in which 
this angle varies from -0 to B. 40". The following discussion is based primarily on 
several theoretical treatments (ref. 7, 8)  and on experimental data published elsewhere 
(ref. 9, 10). 

Note a: It must be noted that 6 bonds decrease in strength proportionally to ~ 0 x 2 ~  (See 
Fig. 1) whereas A bonds follow cosx. Thus even a 40" twist in a A bond (cos 40' - 
0.766) covers less than a quarter of the total bond strength range. It appears that 
there is but one example of a twist as large as 40" in an olefin and that most of the 
"large twists" are only in the 20-30' range. Cf. W. Leuf and R. Keese, 
Stereochem. 20, 231 (1991). 
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THE FULLY ECLIPSED DELTA BOND 

For any two-center, homonuclear bond, whether o, A or 6, an LCAO-MO treatment begins 
with the following four steps: 

1. 

2. The bonding, 4 ,  and antibonding, x ,  LCAO-MOs are 
Let the atomic orbitals on atoms 1 and 2 be designated vl and y2. 

d - 2-'(Y, + 7 2 )  
X - 2-'(71 - 7 2 )  

3 .  The energies of these MOs are 

E4 - %<4 I H, Id> J7iH7id7 + JriHrzdr 
i - l o r 2  - Ey + W (W < 0) 

Ex - E, - W 
Since E, is the energy of one electron in the atomic orbital -vl or y2, we may take this 
as the zero of energy and write 

Eb - W and Ex - -W. 
If there is only one electron to occupy these MOs, we have a very simple (and very 
familiar) picture, as shown in Fig. 2. There are only two states, 2Ag(q5) and 2 & ( x ) ,  
and only one electronic 
transition, namely, that from 
the 'A, ground state to the 
2& excited state, whose 
energy is exactly 2W. 

There are, in fact, a number 
of real compounds that have 
only one 6 electron (or what 
is formally equivalent, three 
6 electrons) and for these 
one can observe a spin- 
allowed 6+6* transition, the 
energy of which provides a 
direct experimental 
measurement of the 6 bond 
energy. Examples are 
[Mo2(S04) 4 ]  3-, [ Tc,C~,]~- and 
Re2C15(PEt3)3. But let us 
return to the theoretical 
development and see what 
happens when there are two 6 
electrons. 

x 

0 
Fig. 2. The energy level diagram for a 6 bond when 

only one 6 electron is present. 

4 .  We must now write determinantal wave functions for the four states that can arise 
(ref. 11). If both electrons occupy the 4 MO, to give a full 6 bond, we have (where 
this and other symmetry designations are for Dbh): 

After separating orbital and spin functions, using a(- %) and j3(- -%) for the latter, 
we obtain: 

where the antisymmetrization required by the Pauli principle is accomplished by the 
spin function. We could also place both electrons in the x MO and get an analogous 
expression, x ( l ) x ( 2 ) [ a j 3 - j 3 a ] .  

When we develop the corresponding expressions for the states arising from placing one 
electron in 4 and the other in x, we have two possibilities, because the Pauli 

$l(l~lg) - 4(1)4(2) [aS-Pal 
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principle no longer restricts us to antisymmetrizing the wave function by way of the 
spins. That can be done, giving a singlet state, 'Azu, but antisymmetrization can also 
be done if both electrons have the same spin by way of an antisymmetric orbital (i.e., 
spatial) function, giving a ,Azu state. Altogether, we have the following four states 
in what is called the 6 manifold: 

The two-term orbital factors in g2 and g3 arise because of the indistinguishability of 
electrons; we cannot assert that electron 1 is in 4 and 2 in x rather than the reverse, 
so we must give both assignments equal weight. 

These four steps set up our problem. We now have to determine the energies of the four 
states. Before actually doing so, we may pause to note that most chemists would 
"intuitively" (whatever that means exactly) expect the following order of increasing 
energy 

$1 << $2 = $3 << $4 
on the grounds that $1 represents a net bond, $2 and $3 represent no net bond, and $, 
is completely antibonding. 

This, however, is not the case; to find out why, we must first derive expressions for 
the state energies and also look more closely at the wave functions. There are many 
computational approaches that can be used. We have already alluded to calculations 
(refs. 5, 6) on [Re~Cl~1~- by generalized valence bond (GVB) methods. Since these are, 
perhaps, not so transparent to most chemists as the LCAO-MO method we shall continue 
to develop our arguments by the latter method. 

By methods that are explained in full algebraic detail in introductory texts (ref, 11) 
we may obtain the energies and it is convenient to express them in a way previously 
adopted by Hopkins, Gray and Miskowski (ref. 12) 

For El and E4 we must obtain the roots of a quadratic equation, because $1 and $, have 
the same symmetry and the true wave functions for the highest and lowest states of the 
6 manifold are not $1 and 7,b4 but, as we shall see in detail shortly, mixtures of both. 
For E2 and E3 we have simple, independent expressions. The entire set of results is: 

W JM - El 
-W + J,, - E, 

E2 = J+, -K 

E, = J+, + K 

In these equations I t W  has the same meaning as before, namely, it is the energy by which 
4 or x, as a one-electron orbital, is lowered or raised, respectively, from their 
average value. JM, J,, and J+, are Coulomb integrals, inherently positive, and 
representing the repulsive interaction between the charge clouds of two electrons that 
are either in the same orbital (JM, J,,) or different orbitals (J+,). Finally we have 
K, the exchange integral, which is simply the energy required, for two atoms, X, 
infinitely far apart, to convert X' + X' to X+ + X-. When the atoms get closer 
together the value of K decreases somewhat because of repulsion between the electrons. 



The delta bond-an old story with a new twist 1387 

Simple though they are, these equations are still a little bit awkward, and it has been 
suggested (ref. 12) that since the overlap between two d6 orbitals is always small, one 

Fig. 3 .  The energy 
level diagram for the 
states of the 6 mani- 
fold when two 6 elec- 
trons are oresent. 

may assume it to be zero, thus making JM - J, - J+,. 
This, then allows us to omit the J ' s  altogether since 
they change each energy additively in the same 
direction. We can now draw the energy level diagram 
shown in Fig. 3 .  

It will be noted that here the relative energies of the 
four states follow the pattern El < E2 << E3 < E4, rather 
than the "intuitive" pattern mentioned earlier. This 
happens because 2K >> W for 6 bonds. For example, in 
Mo,C~,~-, 2K/W = 4 .  

Let us now return to the wave functions previously 
written for the four states and see what they tell us 
about the electron distribution in each state (ref. 13). 
If we take the state wave functions and substitute in 
the LCAO expressions for 4 and x ,  we obtain the 
following results: 

Ionic Covalent 

We see that $2 and Ip3 which are the actual wave functions 
(so long as we treat the 6 manifold alone) are, 

respectively, purely covalent and purely ionic. On the other hand $1 and d4 both have 
half covalent and half ionic character. These are not credible wave functions as they 
stand. It is not, for example, believable that in the lA,, state there are two 
electrons on one atom half the time. The ionic distribution must be of much higher 
energy than the covalent one and, accordingly, should contribute mainly to the 'Al8* 
state, while the lAlg ground state should be mainly covalent. This is, in fact, exactly 
what occurs, and the wave functions $1 and $ 4  are not really the orbital wave functions 
for the lAlg and lAl; states. Through the off-diagonal element these two orbital wave 
functions are mixed (configuration interaction) and the true orbital wave functions for 
these two states are given by 

$(1Alg? - $1 + w 4  

$(lAlg 1 - $4 + W l  

If we examine the expressions for $1 and $4 given above we see that as X increases, 
$(lAlg) becomes more covalent and $( 'Alg*) becomes more ionic. This mixing contributes 
to the stability of the lA1, ground state and raises the energy of the lA18* state. 

STRETCHING THE 6 BOND 

Like any other bond, the 6 bond will weaken if stretched and eventually cease to exist 
if stretched far enough. The 6 bond is, as we have already noted, already rather weak, 
even at its best, but nonetheless, its behavior on stretching should not be (and is 
not) different from that of any other bond. The general problem, as embodied by the 
particular case of the bond in H,, was solved by Coulson and Fischer (ref. 14) a long 
time ago. The exchange integral K will change its value somewhat, but it does not 
vanish, while the JM, J,, and J+, integrals become truly (not as an approximation) 
equal, as the internuclear distance goes to infinity. Therefore, the energy 
expressions become 

El - E2 - -K 
E, E4 +K 

A diagram expressing these results is shown in Fig. 4 adapted from one by Hopkins, Gray 
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and Miskowski (ref. 12). It 
is simply a different way of 
drawing Fig. 3 of Coulson and 
Fischer's paper which 
pertained to the dissociating 
H, molecule. It will be 
recalled that the 3A2u state 
was previously shown to be a 
totally covalent state and 
the lAle now also, in the 
limit, becomes totally 
covalent. Conversely, the 
two upper states become equi- 
energic and totally ionic. 

It should be noted that the 
limiting behavior of the 6 
bond as it is stretched has 
exceptional simplicity. All 
the approximations that have 
been made cease to trouble us 
when we reach the 
dissociation limit. At the 
limit, the picture in Fig. 4 
is completely correct, 
because it deals with a very 
simple system - two non- 
interacting atoms! Along the 
way, however, we do not have 
a completely correct picture. 
The mirror symmetry of the 
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Fig. 4 .  A diagram showing the behavior of the 6 
manifold as a function of internuclear distance 
(adapted from'Ref. 13). 

upper and lower parts o f  Fig. 4 is an idealization, not reality. We have already 
confessed to one approximation, that of setting all Coulomb integrals equal. They must 
differ and this alone will destroy the symmetry of the diagram. In addition, we are 
treating the 6 manifold as an isolated system. In dealing with real quadruple bonds, 
we must also take into account the effects of configuration interaction involving 
states of the molecule, not just the two Al, states in the 6 manifold. At a minimum, 
we should at least consider the 6 manifold as it is embedded in the entire manifold of 
states arising from all of the orbitals and electrons that make up the entire quadruple 
bond. 

There are published results that enable us to see how important these additional 
configuration interactions may be. For the Mo,(O,CH), molecule (ref. 15) the ground 
state is made up of 67% a2n462 and 15% a2t46*2. Of the missing 18%, half comes from 
a2a262~*2 (6%) and n462u*2 ( 3 % ) ,  but then a large number of configurations altogether 
outside of the a-a-6 manifold altogether provide the remaining 9%. In the case of 
[Re2C1,]2-, the following results were obtained (ref. 5) for each of the four states in 
the 6 manifold. 

LeadinP Conf % of Other Confieurations 

02a462, 62 21 3 14 
_ -  3 12 u2n466*, 85 

lAle 50 20 17 13 

- State and % 4 Manif, d Manif. Other 
lA1g 
3A~u 
lAzu* a2a466*, 72 _ -  19 8 

These two sets of results give a general idea of how far we can trust various levels 
of approximation relating to calculations on the 6 bond. Those that deal only with the 
6 manifold are capturing only 70-85% of the picture and even those that treat the 6 
bond within the entire d manifold (that is, all components of the quadruple bond) miss 
8-14% of the complete picture. At however high a level of approximation we employ, a 
picture of how the 6 bond behaves on being stretched to extinction suffers from being 
divorced from reality. We cannot experimentally measure the properties of a 6 manifold 
as the internuclear distances increases toward the dissociation limit. We therefore 
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began looking, several years ago, for some realistic way to really manipulate or tune 
the strength of the 6 bond. 

TWISTING THE 6 BOND 

It has been found (ref. 10) that we can, by doing chemistry, create a series of 
compounds in which the torsional angle (Fig. 1) is changed in fairly small increments 
between eclipsed and staggered while practically nothing else is changed. Actually, 
we can adjust the angle to be in the range 45" < x 5 90" as well, a point of particular 
interest with respect to the optical rotatory dispersion (ref. 16) of the 'Allr + lAZu 
transition, but a subject we shall not deal with here. 

We may reasonably expect that to some appreciable degree, the changes in the four 
states of the 6 manifold as the 6 bond is weakened by twisting will resemble those that 
result when it is weakened by stretching, but it is also evident that there will be 
some differences, A very obvious difference is that while it is rigorously true that 
when the 6 bond is annihilated by stretching it, the two lower and the two upper states 
will converge as shown in Fig. 4, this need not be - and is unlikely B priori to be - 
the case when the bond is annihilated by twisting it. Therefore, rather than simply 
assuming (as has been done (ref. 12)) that the latter situation can serve as a 
reasonable model for the former, let us look explicitly at what should happen when the 
bond is twisted. 

CHARACTERISTICS OF THE 6 BOND 

Three qualitative characteristics of quadruple bonds that have been well established 
for a long time (ref. 13) are: 

(1) There is an inherent barrier to rotation that arises from the 6 component 
and favors the eclipsed conformation (x - 0 ) .  

(2) The contribution of the 6 component of the quadruple bond to its overall 
strength (B. 350 W mol-') is a minor one, probably about 10%. 

( 3 )  The overlap between the two d6 orbitals and hence the strength of the 6 
bond will be a function of cos2x. Thus from a maximum at x - 0, the 
strength will decrease, slowly at first, until it become zero at x - 45". 

There is no doubt that point (1) is correct, but practical questions arise concerning 
the relationship of the total (or net) barrier to rotation in any given case to the 
contribution made by the electronic properties of the 6 bond, and as to how either one, 
or both, of these quantities can be measured experimentally. 

With regard to points (1) and (2)  jointly, there is some lack of precision in the 
literature as to what the relationship is between the electronic component of the 
rotation barrier and the 6 bond strength. Are they the same thing? If not, how do 
they differ? 

As an M2Xan- species is twisted from the eclipsed configuration (x - 0) the symmetry 
changes from D4h to D4 and then becomes D4d. Throughout the range of intermediate 
configurations, the two d6 atomic orbitals continue to interact to form bonding and 
antibonding MOs, but at the 45" limit their overlap becomes zero and they become 
rigorously degenerate, forming a basis for the E2 representation of the Dbd point group. 
Nevertheless, straightforward analysis shows that the eZ2 configuration gives rise to 
four separate states, 'B, and 3A2 that are covalent and 'Al and lB2 that are ionic. 
These may be correlated with the intermediate (D4) states, which in turn correlate to 
the Dqh states, as shown in Fig. 5 .  

A formal analysis (refs. 7, 8)  of the behavior of the four states of the 6 manifold, 
along the same lines as those used above for the untwisted (D4h) case, leads, as shown 
in Fig. 5 ,  to the conclusion that the triplet state will be below the singlet state at 
45" ( D h a ) .  From this it would be concluded that internal rotation about the M-M bond 
in an M2Xan- species from one D4, minimum to another, would require passage through an 
intermediate range of angles, surrounding 45", where the species is in a triplet state. 
As we shall see later, this is incorrect. 

The actual compounds employed for measurements of the relative energies of the three 
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lowest states as a function of x are 
of lower symmetry. A s  a result of 
four X ligands being substituted by 
PR3 ligands, the symmetries 
corresponding to D4h, D, and D4d are, 
respectively, DZh, D2 and DZd. This 
does not affect any essential feature 
of the analysis and the final result 
(ref. 8) is still the same: the ground 
state at 45" is predicted to be a 
triplet state when the behavior of the 
6 manifold is considered in isolation. 

DEFINITIONS OF 8-BOND 
ENERGY, 6-BARRIER A N D  
ROTATIONAL BARRIER 

Before numerical values for pertinent 
parameters can be considered and 
compared, the parameters must be 
defined. Let us begin with Fig. 6 ,  
where 6-bond energy and 6-barrier are 
defined, The definition of the 6-bond 
energy seems obvious: it is the least 
costly way to annul the 6-bond within 
the fixed molecular geometry. The 
6-barrier corresponds to the least 
rise in energy that is sufficient to 
allow transit from one minimum to the 
next, assuming that the energy of the 
triDlet state is constant. If we 

D4h D4 D4d 

lo1 

A2 
3 

Fig. 5 .  A correlation diagram for states 
of the 6 manifold as the torsion (symm- 
etry) changes from x-0' (D4h) through 

system. 
Oo<x<45' (Dh) to X-45" (D4d) for a M2Xs 

fock only on the 6-manifold, this should be true. 

The 6-bond energy could, perhaps, have been taken as equal to the 6-barrier, and some 
authors have explicitly (or, apparently, implicitly) done this. We prefer, however, 
to do as Smith and Goddard (ref. 6) have done, and call the lAlS - 3A2u energy 
difference at x - 0 the 6-bond energy. This seems justified since it is the rise in 
energy when we simply change from the spin-paired ground state to the nearest state in 

which the spins are parallel. 

I I I 1 
0' 45' 90' 

Fig. 6. Schematic diagram for MzX8 or M2X4L6 systems 
in general showing definitions adopted here for 
the 6-bond energy and the 6-barrier to rotation. 

x 

The 6-barrier is not, of 
course, the barrier for the 
actual, physical process of 
internal rotation, which we 
shall call the rotational 
barrier, The actual 
rotational barrier must 
include the 6 -barrier, but 
other contributions, for 
example interactions between 
non-bonded atoms, will also 
contribute, Whether the 
rotational barrier will be 
higher or lower than the 6- 
barrier depends on specific 
factors in each case and no 
generalization would be 
justified. There is only one 
type of molecule for which 
experimental measurement of 
rotational barriers has been 
carried out, namely, the 
(porph)MM(porph) molecules 
(ref. 17) with M - Mo, W, and 
porphyrins substituted so as 
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to allow NMR measurements of the rotational process. 
were obtained. 

AG values of 11-13 kcal mol-l 

THEORETICAL ESTIMATION OF $-BOND STRENGTH AND 8-BARRIER IN 
REAL MOLECULES 

One approach to deter-mining the 6 contributions to bond strength and to the rotational 
barrier (which we shall henceforth simply call the 6-barrier) is to calculate them. 
Two attempts have been made to do this. The first calculation, by Smith and Goddard 
(ref. 6) was done for [ReZClal2-. Their results, (Fig. 7)  show several features of 
special interest. First, in contrast to the bond stretching process, rotation to 45" 
does not cause the lA1, and 3AZu states to become degenerate, and in contrast to the 

I I I .  I 1 
00 4 5. 90. 

Dihedral Angle 

Fig. 7. A diagram of the dependence of 
the energies of the lowest two states 
of the 6 manifold of [ReZCla]2- as cal- 
culated by Smith and Goddard (Ref 7 ) .  
Reproduced by permission. 

prediction from the isolated 6 
manifold analysis, the lowest triplet 
state never becomes the ground.state. 
Instead, a 900 cm-l gap remains. Thus, 
it is clear that the molecule can 
undergo internal rotation without 
passing into a triplet state. Second, 
the rotational barrier, as indicated 
by Fig. 7, is 980 cm-l or 2.8 kcal mol- 
l. This low value is the result of 
having a rather high 6-barrier, 3100- 
900 - 2200 cm-l, about 6.3 kcal mol-l 
partially offset by a loss of 
repulsive energy, 3100-980-900 - 1,220 
cm-l (u. 3.5 kcal mol-l) between the 
two sets of four chlorine atoms, which 
repel each other less in the staggered 
than in the eclipsed confirmation. 
Unfortunately, there has been no 
experimental test of these results, 
nor is it evident how such a test 
could be carried out. There is, in 
principle a possibility of checking 
the calculated 1All-3AZu separation in 
the eclipsed ion by observing this 
spin-forbidden transition, but no one 
has as yet succeeded in doing this for 
ReZClaZ- or for any analogous case. 

There is no apparent way to obtain such information at any other angle of rotation. 

There is one other ambiguity about the calculations on [ReZC18]2- or any other system 
fromthe third transition series, namely, the effect of spin-orbit coupling. This must 
give rise to a zero-field splitting of the 3AZu state into a non-magnetic state (m, .. 
0) and a Kramers doublet (m, - ? 1). With the large magnitude of the spin-orbit 
coupling that is expected for the rhenium atom, or any other atom from the third 
transition series, this splitting could be 2 1000 cm-'. Since the magnitude of this 
splitting is as large or larger than the calculated lAlg - 3AZu separation, it is not 
clear what the true picture at x - 45' would really be. 
Because it is for MoZX4P4 and MO~X~(P-P)~ type molecules that the experimental data to 
be discussed in the next section are available, it is desirable to have theoretical 
results specifically for them. These molybdenum systems are also attractive subjects 
because spin-orbit splitting of the 3A2u state should be relatively small (perhaps 200- 
300 cm-l). Calculations have been made (ref. 8) (Note b) for a Mo2C1,(PH3), 
model system, at both x - 0' and x - 45', by employing an & Jnitio method (CASSCF) 
that includes as "active configuration space" the full quadruple bond manifold. This 
gave about 500 configurations for each state. 
This calculation gives a totally symmetric, singlet ground state at both ends of the 

Note b: The eclipsed molecule for which the calculation was done was the one with DZd 
symmetry (type 1). There is no reason to believe the energies of states within the 6 
manifold will be significantly different for this eclipsed molecule as compared to the 
one with Dul symmetry. 
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.range of x (i.e,, x - 0" and x - 45') with 
lA,, - 3A2u separations of 5890 cm-l at 0" and 
1650 cm-' at 45'. There is very pleasing 
qualitative and even semiquantitative 
similarity to the results summarized above 
for [RezC18]2-. The results of this 
calculation, shown on the left side of Fig. 
8 ,  allow us to predict the 6-bond strength 
(5890 cm-l - 16.8 kcal mol-l) , the 6-barrier 
(5890-1650 - 4240 cm-l - 12.1 kcal mol-') , 
and the rotation barrier. The latter is the 
difference between the calculated energies 
of the DZd eclipsed state with which we begin 
at the left and the energy of the molecule 
with x - 45'. For a molecule of the type we 
are dealing with, this diagram will not have 
the mirror symmetry expected for the M,X8 
type molecule. Instead, on the DZh side 
(which has not yet been calculated) we 
expect the energies o f  the two lowest 
states, lA, and 3Blur to be higher than on the 
D,, side, because the DZh isomer is the less 
stable one. What we do expect however, (and 
experimental measurements of singlet-triplet 
energy separations described below confirm 
this) is that the lA, - 3Blu energy difference 
will be about the same in both eclipsed 
isomers. To put it another way, the Mo,X4P4 
and Mo2X4(P-P), molecules will give a 
virtually symmetrical diagram of the type 
shown in Fig. 6 ,  even though the two minima 
do not correspond to identical structures. 

I I I 

O'lor 90') 45' 90'lor 0') 

%d DZ DZI, 

Fig. 8. Energies of the two lowest 
states of an Mo2C14(PH3), molecule 

45") and DZh (x - 90 or 0"). With D2d (X - O or goo), Dz ( X  - 

EXPERIMENTAL DATA DEFINING THE 6-MANIFOLD AS A FUNCTION OF TWIST 
ANGLE x 

Three energy separations are required to define the relative energies of the four 
states in the 6-manifold. 
separation. This corresponds to the energy of the allowed " 6 4 "  transition that is 
characteristically observed in the visible or near infrared spectra of quadruply-bonded 
species. More precisely it corresponds to the energy of the Y - 0 to u'  - 0 
vibrational component of that transition. 

Another of these energy differences has never been measured for any quadruply bonded 
species and may never be, namely, the lAl, - 'Alg* separation. 
This two-electron transition, which should occur several thousand wave numbers higher 
than the lA,, + lAzu transition should be so weak that it will not be detectable, 
especially in the presence of other, stronger transitions that are expected in the same 
spectral region. There is no evident non-spectroscopic method that could provide an 
experimental measurement of this energy. 

Finally, we have the lA1, - 3A2u energy separation. The orbitally allowed but spin- 
forbidden lA1, + 3A2u transition might in some cases at least, be barely observable, but 
in fact, there is not yet any credible observation of this kind. However, there is 
another experimental avenue to evaluate this energy difference, at least in those cases 
where it is comparable to kT. The paramagnetism of the 3A2u state will contribute to 
the magnetic susceptibility, and if the latter is measured over a temperature range, 
the energy difference that governs the Boltzmann population of the 3A2u state can be 
determined. There is, however, only one reported case where this has actually been 
undertaken, and only a crude result was obtained (ref. 18) 

There is another way to measure the 'A,, - 3A2u separation and that is by means of NMR 
measurements. Again, this is applicable only when the energy is comparable to kT. By 
measuring the temperature dependence of the chemical shift of some type of atom in one 
of the ligands attached to the quadruply-bonded Mzn+ unit, and fitting the results with 
the pertinent equation containing the 'Al, - 3A2, energy difference parametrically, the 
value of this energy difference can be obtained - with considerable accuracy in 
favorable cases (ref. 9). This type of study using the 31P signal has been carried out 
for a group of five Mo2C1,(P-P)2 compounds with torsion angles ranging from 17' to 40". 

One of these is readily measurable, namely, the lA,, - 1 A,, 
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Previously, the energies of the lAl, + lAZu transitions had been measured for the same 
(as well as several other) compounds (ref. 10). These two sets of results may be 
combined to produce the diagram 
shown in Fig. 9. Here we see 
behavior that is very much what 
theory, for both [RezC1,]2- and 
the MoZX4P4 systems themselves, 
had led us to expect. In fact, 
the numerical values given by 
the ab initio calculations for 
the molybdenum system are in 
remarkably good agreement with 
the experimental values. 

By applying the previously given 
definitions for 6-bond energy, 
6-barrier and rotational 
barrier, we obtain the following 
values for these quantities: 

6-bond energy: 4200 cm-l - 12.0 
kcal mol-l (theor., 16.8 kcal 
mo1-1 

6-barrier: 3470 cm-' - 9.9 kcal 
mol-l (theor., 12.1 kcal mol-l) 

Rotation barrier: 8590 cm-l - 
24.5 kcal mol-l 
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