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Abstract 
To resolve transitional entropies and thermophysical contributions to the heat capacity extending over 
relatively large ranges of temperature, we have developed two rather specialized methods for the 
evaluation of the (vibrational) lattice heat capacity valid to a high degree of accuracy compared to the 
ppical extant procedures. The earlier developed method is designated the "Volume Priority Method," and 
it takes into account the relative predominance of volume (rather than mass) over the "chemical 
thermodynamic region" below 300 K. It has been employed in recent years in the resolution of Schottky 
contributions arising from the splitting of the ground state by the crystalline electric fields of lanthanide 
salts with excellent results. The newer method is the "KomadalWestrum Phonon Densiry Distribution" 
method and although it has a generic resemblance to the well-known Debye approach it succeeds where 
Debye fails. It has been used for the resolution of magnetic and other transitions in such mineral systems 
as deerite and grunerite and enables the resolution even of minute electron delocalization phenomena. 
Finally, taking advantage of recent developments in the closely related Barber-Martin approach in the 
analysis of heat capacities, we extend the treatment to alkali silicatesaoth vitreous and crystalline. 
Meaningful values are provided for several fundamental physical parameters which correlated with other 
elastic and thermal properties by (in contrast to Debye theory) taking the dispersion and the resolution of 
acoustic and optic modes into account. Differences in the primitive volume between vitreous and crystal 
phases are noted and the extension of the KomadalWestrum treatment to vitreous phases enabled. 

INTRODUCTION 

Although the measured total heat capacities provide the requisite therniophysical data for thermodynamic 
applications by integration, in many instances the resolution of the cxccss contributions be they Schottky, 
magnetic, ferroelectric, order/disorder, or other is of major interest to the researcher. But the exact 
evaluation of the excess contribution depends on recognition of the "lattice" heat capacity and its 
resolution. Since the latter typically represents more than 90% of the measured heat capacity, its 
contribution must be evaluation accurately and precisely. 

Two of the most commonly used approaches are those of Latimer [1,2] and of Debye [3], but neither is 
truly adequate. The former-used primarily for estimation of entropies of compounds in the absence of 
measurements-attributes an entropy contribution to each anion and represents that of the cation by a 
logarithmically couched function of the atomic mass. The misleading aspect of Latimer's approach became 
apparent after the study of transition-element chalcogenides by Grgnvold and Westrum [4] and the 
depiction of the data in Figure 1. Apart from a surprising constancy of the entropies throughout the d- 
electron transition element series is the perpendicularity of the lanthanide family's dependence to the 
predicted logarithmic mass dependence. Here, where cationic masses and molar volumes are clearly 
disparate as a consequence of the "lanthanide contraction" it is evident that "volume priority" clearly 
overrides "mass priority" as has been demonstrated in our works on lanthanide sesquisulfides [ 51, 
sesquioxides, trihydroxides, halides, etc. despite Grimvall's [6] mathematical "defense" of Latimer's 
approach. Yes, mass needs to be factored into the argument at very low temperatures, for example, but 
over the chemical thermodynamic region, volume is clearly the variable to be reckoned with as shown in 
Figure 2. 

We have developed our "volume prjoriry" theory by a simple linear interpolation of heat capacity 
across-in the light lanthanides-lanthanum and gadolinium molar volumes and this calculation is 
repeated (isothermally) over the entire temperature range. It has been used effectively and accurately. The 
Debye heat-capacity function [3] was known by Debye himself to be a crude approximation on 
structureless continuums, without reference to geometry, simplified by assumption of constant acoustical 
wave velocity, but despite their failure they are widely used to represent aspects of the temperature 
morphology of heat-capacity curves. It did, however, trigger the independent analysis of Born and Von 
Kirrnrin [8,9] on the lattice vibrational spectrum. Many others contributed to the solid-state vibrational 
theory, but inastnuch as we recognize a limited goal, the full details of lattice dynamics are rather more 
than we can afford to cope with, particularly in the characteristic absence of thermal expansion values on 
crystals of interest. 
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Fig. 1. Comparison of Gronvold and Wesuum's 
scheme 141 against the background of the Latimer 
scheme (o*-***o). The Latimer-scheme contri- 
butions: (o), experimental values for the lanthanide 
cations [7]: (-) experimental values for the 
transition-elemental cations [4]. 
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Fig. 2. Correlation of entropies and molar volumes. 
The values in parentheses are molar masses of the 
cations; hence, the monotonic trend would fail for 
the Latimer relationship. 
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THE PHONON DISTRIBUTION MODEL 

Kotnada and Westrum developed a new model for the phonon distribution [ 10-12) distinguished by a single 
characteristic temperature as a fitting-parameter for the analysis and/or prediction of the thermodynamic 
properties. Although the equation derived from the model to calculate the lattice heat capacity at constant 
volume is somewhat lengthy, it is simple enough to manage even on a microcomputer. Three computer 
programs written in FORTRAN IV were prepared to evaluate apparent characteristic temperatures from 
given heat-capacity data, to predict lattice heat capacities from the given Characteristic temperatures, and to 
compare the predicted and given (possibly experimental) heat capacities. These programs ensure the 
convenient analysis of heat-capacity data. The model has already proven its Qtility in treating experimental 
data on eight compositions of matter (Mn0.63Cr0 37A~, deerite, grunerite, and some scapolites) [lo]. 

Although time does not permit a detailed description of the model, it is composed of four major 
contributions corresponding to transverse acoustical, longitudinal acoustical, transverse optical, 
longitudinal optical, and-if appropriatediscrete internal vibrational modes [ 10,111. It takes account of 
the influence of mass distributions and the non-spherical shape of the first Brillouin zone on the 
phonoddensity distribution. An isometric molar lattice heat-capacity equation is derived on the basis of 
the phonon-density distribution model restrained to the harmonic oscillator approximation. Although the 
equation contains several parameters which may be evaluated from chemical and crystallographic data for 
the particular compound-ox be filled by default values-a single remaining (constant) parameter eKW 
(similar in some respects to the Debye characteristic temperature) is used to fit the heat-capacity curve. 
The test of the approach is in the constancy of the In Figure 3 this is tested against 
experimental data for deerite. It is evident that above 30 K the eKW is nicely linear and constant in marked 
contrast to the meandering of the Debye characteristic temperature, 0, At the lowest temperatures both 
0's respond to anomalous behavior in the sample. 

itself. 
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Many applications of this method have already been made and show the tremendous power of the 
approach. These include resolution of Schottky contribution (despite excess contributions over most of the 
experimental region), magnetic transitions in minerals, and even the resolution of electron delocalization 
phenomena. Correction for anharmonicity has proven practicable. 

COMPARISON OF VOLUMETRIC PRIORITY A N D  PHONON-DENSITY 
DISTRIBUTION APPROACHES 

A comparison of the resolution of Schottky contributions for six y-Ln2S3 compounds by the "Volumetric 
Priority Method" based on interpolation between heat capacities of lanthanum and gadolinium 
sesquisulfides (neither of which have Schottky contributions) and the same data treated by the "Phonon- 
Density Distribution Method" is presented in Figure 4. Taking into account that the excess heat capacity 
attributable to the Schottky contribution is typically less than 10% of the total, the close agreement between 
the two methods-despite the very significant difference in their theoretical approaches (e.g., in their 
incorporation of temperature dependencetargues for the correctness of both. This is further verified by 
the comparison of the Schottky levels derived from fitting the combined curves and comparing these values 
with the crystalline electric fields splitting values obtained by spectroscopy [5,13,14]. The excellence of 
the agreement provides the final justification for both approaches. 

Because the estimation of lattice heat capacity is important in resolving excess heat capacities, in 
extrapolating heat-capacity curves beyond the temperature region measured, and in predicting the heat 
capacity of related compounds, the Debye model is still often used for these purposes. Lattice heat 
capacity is fully described by essentially a single variable, the Debye characteristic temperature, which can 
be treated as a parameter determined by fitting the model to the heat-capacity curve. However, the model 
generally provides an accurate estimate only for the extremely low-temperature region (typically below 
1/50 of the Debye characteristic temperature). 
The Born-Von K6rmkdn formalism [ 8,9] facilitates evaluation of an accurate density of vibrational modes 
as a function of frequency and the estimation of a more accurate lattice heat capacity. The number of force 
constants in such procedures is, however, so large that many phonon models have been used to reduce the 
number of parameters. But since even these phonon models require roughly ten parameters to represent the 
phonon distribution function for a simple compound and require additional data from sophisticated, slow 
neutron scattering experiments, etc., they are quite impractical for the routine analyses of heat-capacity 
data. 
Many others have sought a reasonably simple and accurate model of phonon distribution for practical use. 
A popular method is to express lattice heat capacity as a combination of Debye and Einstein functions. 
That is, two transverse acoustical modes (sometimes degenerate) and one longitudinal acoustical mode are 
approximated by a parabolic distribution which leads to a Debye function. 

OTHER MODELS 
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Fig. 4. Comparison of Schottky contributions obtained from Volume Priority - - - - - and Phonon-density 
distribution - -methods. 
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The more recent Kieffer model 115,161 has been useful in mineralogy. Kieffer's theoretical and 
experimental correlation of the lattice vibrations of minerals takes into account the many factors involved 
and discusses particularly the analysis of the vibrational contribution. Though such semi-empirical 
approaches are very useful, especially for prediction of the lattice heat capacity from elastic and 
spectroscopic data, it is very difficult to derive from them a representative characteristic temperature and, 
therefore, useful relationships like the Lindemann equation or the Griineisen relation are not applicable 
unless each vibrational mode is considered independently [7]. Another problem with such methods is the 
impracticality of fitting them to the experimental heat-capacity curve because of the many parameters 
involved. Therefore, the application of these methods to the analysis of calorimetric data is confined to the 
comparison between predicted and experimental heat capacities when elastic and spectroscopic data are 
available. 

EXTENSION TO THE VITREOUS PHASE 
Another aspect of phonon-density distribution yields an analysis of the vitreous structures and enables the 
development and determination of primitive volumes for vitreous materials and thereby their inclusion 
within the Komada-Westrum approach. The first derivation from first principles of an adequate, 
practicable equation was published by Barker and Martin in 1959 [17]. The Debye functions can be 
improved to fit essentially within experimental uncertainties by introducing W(v)  versus v, in place of 
Debye's constant W(0); i.e. by representing velocity dispersion in go&, v,*) versus v. Such dispersion 
formulas were derived and published by Schrodinger [18] in 1926 but the dramatic improvement in them 
has not been appreciated and they have been so neglected and underappreciated by reviewers and 
monograph writers that they have been rederived and evaluated independently of Schrodinger in 1959 [17] 
and again by Kieffer in 1979 [ 151. 
Derivation of the dispersion formulas follows from Brillouin's fundamental description of wave 
propagation [ 191. Two comprehensive reviews were available to us during our project: those of Blackman 
[20] and of de Launay 1211. Blackman reviews not only his many earlier papers but evaluates a dispersion 
formula similar to Schrodinger's for which he cites Schrodinger's reference to an earlier paper by Born and 
von K h a n  [9]. 
We were not the first to seek structural information from CJ7J of glasses; between 1945 and 1957, before 
any data suitable for such inferences was available, Tarasov 1221 published a series of papers in which he 
claimed to show that "specific heat functions for chain-like structures" could be found in "temperature 
dependence of the specific heat of vitreous B 03," for example, and that similar evidence of "layered" 
structures could be found in certain silicate and &rate glasses. His several papers are reviewed collectively 
and expanded in a book [23]. His curve-fitting exercises which failed to take due account of velocity 
dispersion cannot lead to credible results. 
Barber and Martin's equation takes into account velocity dispersion of both transverse and longitudinal 
acoustical phonons. Their formula 

g(v,v,*) = 7 2 ~ z {  sin-l[rcvii/~(o)] 12/ [x~w(o)(  1 - r~vZ/~(o)121'/2] (1) 

is significantly better than the Debye distribution. The corresponding parametere = 28dx,  and the density 
of states at v,* is greater by ( ~ 2 ) ~  = 3.876 and zero at VD 

The Barber and Martin values of Cv(v,v,*) ,are best compared with the corresponding Debye formulation in 
a plot of l n ( C ~ ~ / 3 R )  versus In( l/x as in Figure 5. Such curves can be rescaled simply by adding 8 to the 

(within experimental uncertainty) with a theoretical function of x by appropriate translations along both 
axes to ascertain the values of 8, which best represent measurements of In C, versus In T.  

latter coordinate and subtracting 8 3 from the former. Conversely, the plot can be brought into coincidence 

3.5 Area between curves 
represents anor 

3.3 - due topeolect 
Fig. 5.  Reference curve. Barber theoretical 
curve with dispersion - . Debyecurve 
without dispersion - - - - - (C = CJ3R). 
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Velocity dispersion entirely accounts for the maximum at In x, in the dispersion function. Its neglect by 
Debye yields a curve without a maximum. 
The analysis of experimental C, versus T begins by plotting In (fC,/3RT3) versus In T where f is the 
fraction of primitive cell volume represented by C,. When experimental data are functions of acoustic 
phonons only, such plots approximate the reference curves in shape and by judicious choice of coordinate 
scales the maximum can be brought to near coincidence with that of a reference curve without modifying 
the shape of the experimental curve. 
Although the general approach outlined here has been applied to crystalline tungsten, copper, and to 
various Si02-phases, we will summarize only briefly the main results on crystalline and vitreous alkali 
disilicates in Tables 1, 2, and 3. The size of the primitive cell is the most important derivative result for our 
application and enables us to apply the Komada/Westrum approach to the vitreous phase. Table 1 provides 
the characterization of the alkali disilicate samples studied. They were in the form of case annular 
cylinders to fit over the heatedthermometer well in the calorimeter. 

Table 1. Characterization of alkali disilicales 

LizO*xSiO2(v) 2.086 192.4010 155.183 150.05 1 2.308 
Na O*xSiO (v) 2.034 184.4097 184.19 1 182.149 2.485 
K$*xSiOz&) 2.100 188.2779 220.374 214.365 2.472 
L120*xSiO (x) 1.940 1 16.790 1 146.446 150.05 1 2.430 
Na O*xSi& (x) 1.989 109.0478 181.488 182.148 (2.50) 
K28*xSi02tx) 2.037 99.9374 216.588 214.365 2.410 

a v = vitrcous, x = crystiillinc 
molccular mass or non-stoichiomctric sainplc 
molccular mass of stoichiomctric conipound 

Table 2. Adjusted tliermopliysical propertics of vitreous and crystalline disilicales at 298.15 K for 
Mz0-2Si0~ compositions 

Composition 

Li20*2Si02(v) 
Na20*2Si02(v) 
K20*2SiOz(v) 
Li20*2S i 0 2 (  x) 
Na20*2Si02(x) 
K20*2Si02(x) 

17.95 16.30 2762 7.04 
19.21 20.67 3217 9.68 
19.49 23.26 3506 11.60 
17.34 14.65 2568 6.04 
19.02 19.47 3176 8.82 
19.38 23.00 3478 11.33 

Table 3. Summary ofgvalucs a for vilreous and Crystalline alkali disilicates 

tz(LizO*2.086 Si02) (v) g 109.5 2.20 4 98.9 145.3 112.4 4.6 12.44 
81.0 133.1 95.6 6.1 12.30 
63.7 112.1 76.9 

10.57 
10.40 

(W,, W I  not known) 

~~ 

a From corrcsponding valucs of n andQ,(O) calculatcd from our &JILI 
From graphical analysis 
I is thc numbcr or gram formula inasscs pcr primitivc ccll 
n = thc intcgcr ncarcst f is plausiblc but not always vcrifiablc in valucs of8. (apparcnt) especially in cascs whcrc both n and . .  - -. 

thc total nuinhcr of modcs arc largc 

from thc cryogcnic hcat-capacity rcsults. Thc optic contribution lrcqucncics arc thc dilfcrcncc bctwccn thc cxpcrimcnlal and 
From W,, WI and V,; t = transvcrsc, I = longitudinal. %a is rcquircd in thc Barbcr inodcl to scparntc thc acoustic contribution 

- thc calculatcd acoustic curvcs. 
1 h*ccll = 2a ccll 
g (v) indicalcs glass; (x) indicatcs crystid 
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The values of the smoothed thermophysical properties given in Table 2 adjusted to stoichiomeuic 
composition at selected temperatures are obtained by computer smoothing of the heat-capacity data and 
integration both by hand and by computer of these values to get the other reported thermophysical 
properties. The adjustment to stoichiometric end member composition was made by utilizing the heat 
capacities of vitreous silica and of a-quartz for adjustment of the vitreous and crystalline materials, 
respectively. The entropy (increments) and derived properties for the vitreous phases are those above zero 
Kelvin. It is presumed that the zero point entropies for these phases are probably deviant from the third 
law of thermodynamics. 
Even without knowledge of V* from atomic structures in either crystals or glasses, it is possible by 
inference from dispersion maxima alone to show that V* equals one gram formula volume (gfv) in each of 
the three crystalline materials and V,* equals at least two gfv's in the glasses shown in Table 3. Moreover, 
by application of the Barber and Martin model to our alkali disilicate systems, the experimental low- 
temperature heat capacity yields detailed information about important physical parameters such as the 
volume of the primitive cell, and the interatomic spacing (which governs the wavelength). The glassy 
forms of binary disilicates have a peak in their frequgcy distribution at much lower relative frequencies 
than do the corresponding crystalline materials, i.e., 8, < 0,(x) and is probably related to the very open 
structure of these materials. The gm values cannot be verified by the T3 law for any glasses at any T ,  but 
they can be inferred from dispersion theory at T ,  - 0(0)/6. The corresponding values of g,(O) are 
uniformly higher in the crystals than in the glasses as required by hypothesis. 

Novel derived contributions to the science of glasses are that meaningful values are provided for the 
several fundamental parameters listed in Table 3. These are important characteristics of elastic solids and 
correlate with other elastic and thermal properties. In contrast, the conventional Debye theta, being an 
arbitrary representation of thermal effects without distinction of acoustic (i.e., elastic) from optic modes, 
lacks such relevance to the other parameters of elasticity. Primitive volumes in these glasses are only about 
twice that of those for crystalline (Na, K) materials with one exception (Li, n = 4). This implies 
remarkably small differences between ordering in glasses and in crystalline materials-no more than could 
be expected by mixing two well-ordered polymorphs of the same composition. 
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