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ABSTRACT - The theoretical and computational description of a chemical 
system requires the availability of a variety of techniques, each one optimally 
adapted to address a very specific level within the very wide spectrum of chemical 
complexity. We elect to comment on very accurate methods (Ilylleraas CI) for up 
to three electrons in molecules and for accurate methods (CI) for up to 10 
electrons in atoms: Next we cross over to large molecules, where the main interest 
is in the structure and dynamics. Here we use molecular dynamics, either using at  
each time step many-body a6 initio derived interaction potentials (for liquid water) 
or density functionals and quantum-mechanically obtained energies and forces (for 
a cluster of 60 carbon atoms). In each of these four topics, the data we report is, in 
part, unpublished research, which, however, is presented in suflicient detail as to 
give the reader all the needed information to evaluate our conclusions and sug- 
gestions in forecasting aspects of computational chemistry eight to ten years from 
now. 

INTRODUCTION 

There is a truly large range of thermodynamic properties one can obtain from laboratory data, covering 
a broad spectrum of techniques developed in more then one century. However, more and more one can 
notice an increasing contribution of thermodynamic data derived from computational methods, the 
latter being developed approximately in the last one to two decades, namely since computations and 
computer programs become, the former sufftciendy fast, the latter suliiciently available to impact the 
chemical community. 

By and large there are two main avenues of computational methods in chemistry yielding 
thermodynamic data, precisely computational quantum chemistry and computational statistical 
mechanics. The former includes ground state and excited state properties and corresponding spectra. 
The basic equation is the Schrodinger equation in its many approximations. The main statistical 
mechanics approaches are either time independent (Monte Carlo) or time dependent (Molecular 
Dynamics). The basic equations are either Newton equations or Langevin equations; as it is known, the 
latter can be considered as modified from the former when one considers an average over a long time, 
and resolution constrained to a well-defined model. 

There are new approaches in today’s computational chemistry, taking their place near the traditional 
ones. Indeed, the traditional techniques for stationary state quantum chemistry and equilibrium molec- 
ular dynamics are being expanded with Quantum Monte Carlo,l Quantum Molecular Dynamics,2 
Microdynamics3 but also by research and computer programs on Data Dasc, Interactive Animation, 
Artificial Intelligence and Chemical Knowledge Processing.4 

This very vigorous expansion should, however, not be taken as indication that the problems character- 
istic in the traditional areas have been overcome. Indeed, it is somewhat nearer to the truth the observa- 
tion that new areas are perhaps opened to dissipate the energy of the increased manpower, which has 
been frustrated in attempting to solve “old” problems! 

Presently, we are  a t  the end of the IVth computer generation, where we have witnessed not only 
increased MIPS performance, but especially MFLOPS performance, either because of vector or parallel 
architectures. From personal computers, to workstations, to mainframes and supercomputers, the 
advances have been on a very broad front. 

The next computer generation is the Vlst and, only more slowly, the much heralded Vth generation. In 
the Vlst generation we have already announcements of supercomputers with peak performance of about 
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20-30 GFLOPS; thus it is expected we shall grow between 100-500 GFLOPS, partly by decreasing the 
clock speed, mainly because of multi-processing. We already see workstations with the same speed as 
the old CRAY XMP (single processor) and the disk storage is being addressed by channels working in 
parallel, with optical fibers and one or more miles in interconnected distances. Slowly, also the Vth 
computer generation will appear, since artificial intelligence and expert systems are becoming ubiqui- 
tous, and this will add pressure to the hardware manufacturers. 

In the conclusions of this review paper we shall consider today’s computational tecvniques hut assuming 
availability of systems with up  to 500 GFLOPS and capable of retrieving from disli storage hundreds of 
Giga words a t  100-500 Mbytes/sec transmission. These predictions are “reasonable” in a technical view- 
point, and also “reachable to relatively few” in an economical context. Clearly, the main computing will 
trail behind these limits, but everybody will experience much improvement. 

We shall start by considering one of the first techniques introduced in quantum mechanics6 and later 
adapted within the configuration interaction (CI) framework: Hylleraas CI The examples will deal with 
the simplest chemical systems but a t  the highest accuracy level. 

Next, we shall move away from the goal of 10 cm-1 (i.e. 0.00005 a.u.) accuracy in absolute energy and 
move to to the milli-hartree accuracy, again using C1, but with standard expansions of determinantal 
functions. The examples analyzed, are iso-electronic series for He (IS), Li (%), Be (IS), and Ne (IS). 

We shall not consider the standard and popular methods like M d e r  Plesset perturbations, already too 
well known. There is a tendency in today’s literature to overclaim the accuracy one has obtained using 
MPx. Indeed, we note that most authors are comparing, for example, binding energies in a molecule 
with atomization products, which are far from the limit of the adopted approximation. For example, 
onen a calculation proceeds to post-Hartree-Fock corrections before reaching a near I Iartree-Fock 
value (which is seldom obtained in today’s literature). In addition, basis set superposition (BSS) cor- 
rections are often neglected and basis sets with nearly zero BSS error are essentially unknown. In this 
way ab initio techniques are used “semi empirically” with calibrated basis sets, which we are becoming 
accustomed to seeing discarded, because of their unreliability, every four to five years! A different situ- 
ation occurs in the use of MBPT, where the methodological rigor is clearly superior.5 

Indeed, we shall be interested in sufficiently large systems where even a MP2 computation would 
become computationally much too expensive. This is the area of a6 inifio molecular dynamics and 
quantum molecular dynamics. We shall consider two systems, one composed of 1000 water molecules 
in a periodic system, i.e. liquid water, and the second with 60 carbon atoms in the C q  cluster. In the 
conclusions we shall consider other systems of higher complexity, and for which work IS in progress in 
our laboratory. 

The four examples we have mentioned have been the subject of recent and mostly unpublished studies 
from our department, thus we are in the ideal position to report and discuss the corresponding com- 
puter time wing the same hardware and system software. This will simplify our extrapolations and yield 
a reasonably reliable forecast for about ten years from now, namely at  about the end of the Vlst com- 
puter generation. 

VERY FEW ELECTRON SYSTEMS 

The traditional approach to quantum mechanical descriptions of many-electron systems in atoms, mole- 
cules, and solids is to optimize linear combinations of one-electron functions, namely functions of one 
electron only (with space and spin components). This type of approach leads then to describing corre- 
lation in an implicit manner, and hence these techniques converge rather slowly to the true solution of 
the many-electron time-indepedent Schroedinger equation. 

Instead of the implicit approach, one can argue that the most powerful approach should be one where 
inter-electronic coordinates are  built explicitly into the wavefunction. Hylleraas was the first to develop 
this approach and he used it to calculate the energy and wavefunction of the helium atom with great 
success.6 James and Coolidge’ extended this method to the hydrogen molecule and Kolos and 
Wolniewiczs have shown that, to date, it is the most ellicient method available for calculating accurate 
potential energy curves in the hydrogen molecule. The results of the latler authors even challenged the 
experimental spectroscopic data. The verification of their prediction was hailed as “a great triumph of 
ab initio calculations” by R. S. Mulliken.9 However, due to the numerical complications introduced by 
the inclusion of inter-electronic coordinates in the wavefunctions, Hylleraas’ approach was limited to 
simple cases such as the helium atom and the hydrogen molecule. 

With the advent of supercomputers, a more general extension of the principle of explicit inclusion of the 
inter-electronic separation into the wavefunction is possible. This consists of multiplying standard many- 
electron wavefunctions by powers of the inter-electronic distance ru. This approach is completely 
general, it can be applied to many-center, multi-electron systems of any type. The only limitation, as is 
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generally the case in computational chemistry, is imposed by computational resources; later, in section 
5, we shall return on this point. 

The standard CI approach consists of expanding the many-electron wavefunction Y(1,2, ... , N) in a 
linear combination of configuration state functions (CSFs) 4k such that 

where @k is a linear combination of totally anti-symmetric determinantal states each consisting of N 
independent molecular orbital functions cp1 and NCSF is the total number of CSFs included. The HCI 
approach modifies Eq. (1) by expanding the wavefunction in powers of the inter-electronic distances rij 

weighted by the original CSFs 4 k ,  i.e. 
N NCSF 

Y H C [ ( 1 $ 2 $ * * * $ N ) = z  1 C Cv,kfG@k(1v%..*vN). (2) 
V i<j=l k=l 

The effect of the rij terms is to explicitly introduce correlation into the wavefunction. This expansion in 
the inter-electronic distance is generally assumed to be a power series expansion,lo thereby limiting v to 
non-negative integers. It  has been shown by others11 that of the possible non-zero v values, v = 1 is the 
most important and our discussion will be limited to the v = 0 (normal CI) and v = 1 (what we term 
HCI) terms. It has also been shown repeatedly that inclusion of the HCI terms does speed the conver- 
gence of configuration expansions and that the HCI method is a viable alternative when high-accuracy 
calculations are needed. 

If we now assume that the molecular CSFs are constructed of standard Cartesian Gaussians, we can use 
straightforward techniques useful for performing computations.12-13 This has been done and a com- 
puter package has been created that performs HCI calculations for many-center, two- and three-electron 
molecular systems.12-14 Expansion to the most general four-electron integrals has not yet been done. 
This package is called HYCOIN(Hylleraas Configuration 1nteraction)ll and it has been used success- 
fully to calculate a number of molecular states.14-20 

The natural place to begin our examination of correlation in small molecular systems is the ground-state 
of H a ,  two electrons and two protons. Table 1 summarizes the erect of basis set size for I-ICI calcu- 
lations on this ~tate.15~17 $21 The "exact" variational limit for this state was established by Kolos e i  n1.,22 
who used a specialized elliptical coordinate basis set with an explicitly correlated wavefunction, at 
-1.1744757 hartrees. The largest basis set of our calculation, (15s7pZdlr) , produces an HCI energy that 
is less than 0.3 cm-' above this variational limit. If spectroscopic accuracy is defined as having an error 
of less than -1 cm-1, Table 1 indicates that it can be achieved with a basis set of size as small as 
(1 3s7p2d). 

TABLE 1. The effects of the basis size in Hz at an inter-nuclear distance of 1.401 1 bohrs (total energies 
are given in hartrees). 

Basis Set SCF Conventional-CI Hylleraas-CI 

(1 3s) -1.1 28532 -1.1 5488 1 -1.168870 

(13~7~) / [13s lp l  -1.133561 - 1.1 70495 -1 . I  74334 

(1 3s7p)/[13s2p] -1.1 33561 -1.171378 -1 .I  74380 

(1 3s7p1 d)/[ 13sl pld] -1.1 33610 -1.171 661 -1.174399 

(1 3s7p 1 d)/[ 13s2p 1 d] -1.1 33618 -1.172596 - I .  174456 

(13s7pld) -1.133618 -1.173306 -1.174467 

(13s7p2d) -1.133619 -1.173858 -1.1 74473 

(1 4s7p2dlr) -1.133622 -1.1 73987 -1 . I  74474 

(1 5s7p2d 1 r) -1.133622 -1.1 73987 -1 - 1  74475 

Compared with conventional CI, the size of the basis set seems to have much less effect on the recov- 
ering of the correlation energy. For example, addition of the first contracted p -gaussian lowers the 
conventional CI energy by 0.016614 hartree, but brings down the HCI energy by only 0.005464 hartree. 
Similarly, one d-type function added to the (13s7p)/[13slp] basis set has an effect of 0.001 16 hartree in 
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conventional CI, compared with 0.00065 hartree in HCI. All of these seem to be due to the fact that 
most of the correlation energy has already been picked up in the s-function basis set, 86% with HCI 
compared to 52% with conventional CI. Thus the HCI method should be much superior to conven- 
tional CI in terms of convergence to a given accuracy in energy. That is indeed the case. For example, 
the HCI energy obtained with (13s7p) contracted to [13slp], -1.174334 hartree, is already much better 
than CI employing 5s3p3d2f Slater functions, -1.174142 hartree.23 Addition of one d-function lowers our 
calculated energy to -1.174399 hartree, which is slightly better than a calculation employing uncon- 
tracted Gaussians with angular momenta up to g: (12s6pSd4f2g)P 

The next obvious step towards more complicated molecules is to increase the number of centers from 
two to three while keeping only two electrons, this means the study of the non-linear H i  molecule, a 
problem that cannot be tackled by the less general elliptical coordinate methods. We have recently 
examined both the equilibrium energy and calculated a number of points on the potential energy sur- 
faces of both the ground 'A'! state and first excited jZ$ state of Hf.191 20 The lowest energy obtained by 
us for the equilateral triangle geometry of the ground state was -1.3438279 hartree at the internuclear 
distance of 1.6500 bohrs with the use of a 13s5p3d basis set on each site (a total of 138 basis functions). 
This energy is compared in Table 2 with other recent ab initio calculations on the equilibrium energy. 
From Table 2 we can see that this energy is significantly lower than the previous best published vari- 
ational calculation of -1.343500 hartreeJ5 and is in excellent agreement with the results of the latest 
quantum Monte Carlo calculations, - I  .34387f.00005 hartree31 and -1.343350005 hartree.32 The 
energy is also below the soon-to-be published result of Alexa'nder et u1.,33 who used a Random- 
Tempered Optimization method with Gaussian-Type Geminals (also a variational calculation with an 
explicitly correlated wavefunction), and obtained - 1.3438220 hartree at  an equilibrium separation of 
1.6504 bohrs. 

TABLE 2. Selected ab initio calculations for the ground state equilibrium energy of H3', 

Authors Method RJb) E(h) 

Salmon, et a1.25 (1973) 
Mentch, et ~1.26 (1981) 
Preiskorn, et a1.27 (1984) 
Burton, et ~ 1 . 2 8  (1985) 
Meyer, et a1.29 (1986) 
Anderson30 (1987) 
Traynor, et a1.31 (1988) 
Urdaneta, et al.15 (1988) 
Huang, et a1.32 (1990) 
Alexander, ef a1.33 (1990) 
Frye. et a1.19 (1990) 

CI, 18 SP  
Random Walk 
SCC, 24 CGLO 
CI, 108 PNO 
CI, 104 CGTO 
Random Walk 
Random Walk 
HCI, 48 CGTO 
Random Walk 
RTO, 700 GTG 
HCI. 138 GTO 

1.6500 
1.6500 
1.6504 
1.6525 
1.6504 
1.6500 
1.6500 
1.6504 
1.6500 
1.6504 
1.6499 

-1.34335 
-1.3439 f .0002 
-1.343422 
- 1.34272 
- 1.34340 
-1.34376 f .00003 
-1.34387 & .00005 
-1.343500 
-1.3433 f .0005 
- I  .3438220 
-1.3438279 

Note: SP = Singer Polynomial, CGLO = Contracted Gaussian Lobe Orbitals, PNO = Pseudo 
Natural Orbitals, CGTO = Contracted Gaussian Type Orbitals, RTO = Random-Tempered Optimiza- 
tion, GTG = Gaussian Type Geminal, GTO = Gaussian Type Orbitals. 

From here, we can continue on lo HJ. Now, with three electrons the complexity of the integral calcu- 
lations goes up dramatically and, commensurately, so does the need for increased computational 
resources. In fact, at this juncture, only small basis set calculations have been performed with the HCI 
method. A example of this is a 3slp basis set calculation for linear HJ with internuclear distances of 
1.75 b.14 The SCF energy for this configuration was -1.5849093 a.u., th,e CI energy was 
-1.6217005 a.u., and the HCI energy was -1.6366379 a.u. This result should be compared with the 
result of B. L id3  who obtained an energy of -1.658743 a.u. at the same saddle point with a CI calcu- 
lation using a Slater-type function basis set containing orbitals up through 5f. A good computation for 
H3 would require the same type of basis set used above for H2., For example, using the MELD 
program of Davidson34 with a (15s5p2d)/[1 ls5p2d] Gaussian basts set, we obtained a saddle point 
energy of -1.658323 a.u., which is 0.000423 a.u. above the best results of B. Liu. This basis would be 
a more than sulficient starting point for an HCI calculation on H1 to ensure a few cm-* accuracy in the 
total energy. We now take the liberty of extrapolating our CPU timing for this possibility next. 

It should be noted that the following timings were found with a very recently implemented code that has 
not yet had extensive optimization, therefore the timings and, more importantly the extrapolations, 
should be taken as indicative rather than concrete predictions as effort to-date has concentrated on "cor- 
rectness' rather than "performance". To begin, a trivial basis set of a single s-type orbital on each 
center takes 359 seconds on an IBM ES/3090-J/VF to calculate the integrals. A basis set of l s lp  on 
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each center(l2 total orbitals) takes 191 hours on the same system and a basis set of 3slp requires 
approximately 1000 hours. Notice that the number of integrals required to be calculated goes as N6 
where N is the number of basis functions. It is intriguing, and somewhat depressing, to speculate what 
would be required to perform a H1 calculation that would be accurate to within 10 cm-' of the "exact" 
value, which is not yet known as it is for H2 .22 If the lessons learned from 112 are  valid, then an full 
HCI calculation with a basis set of (13s7p)/[13slp] should provide approximately 10 cm-I accuracy. 
Scaling from 3slp to 13s7p by N6 would call for somewhere around 3500 years o n , a  similar system, not 
counting the six-index transformation which scales as N7. This is clearly not yet .approachable without 
fundamental improvements in either, and probably all, theory, implementation, and hardware. 
Assuming a significant improvement in the numerical analysis and its corresponding code, a t  best we 
could reduce the task to 10-20 years. This is not unfeasible if a more eflicient numerical integration is 
found and if integrals smaller than a given threshold are ignored and/or approximated. Indeed the 
latter is regularly achieved in SCF computations where savings of a factor of lo3 are well-known and 
documented.35 

FEW ELECTRON ATOMS 

Let us now consider a more traditional approach, namely a linear combination of Slater determinantal 
functions, i.e., the Configuration ,.Interaction approach. We shall start with two electron systems, and 
then expand up to ten electrons. T h e  systems considered are atoms and ions, specifically, the correlation 
energy was computed for the neutral ground state of atoms and selected ions of the 2, 3,  4 and 10 
electrons isoelectronic series.36 

We used ATOMCI, an atomic Configuration Interaction program based upon the powerful techniques 
developed in the early seventies by Sasaki,37 and used by Sasaki and Yoshimine3W to compute corre- 
lation energies and electron aflinities of the first row atoms. ATOMCI has been recently revised and 
extensively do~umented.40~ 41 

We performed single reference single and double CI (SDCI) calculations using Gaussian Type Orbitals 
of geometrical basis sets (GBS).42 Using GBS helps to decrease the elibrt in the orbital exponent opti- 
mization; we recall that in the geometrical basis set42 the orbital exponents u, are related by the equality 

u. I = .,cJ-' (j = 1 ,  ..., n) (3)  

and therefore only two parameters need to be optimized for a given set of n elements, i.e. u, and C. 
The same set of exponents were used in orbitals with different angular momenta, and our basis sets 
included up to i functions. 

TABLE 3. Electronic Correlation Energies (ESDCI-EHF) and Total Energies (EsDcl, parenthesis) in a.u 
for some members of the 2. 3. 4 and 10 electrons isoelectronic series. 

Z 
2 He 

3 Li 

4 Be 

10 Ne 

18 Ar 

30 Zn 

36 Kr 

54 Xe 

2-1s 
-0.04196 

(-2.9036371 8) 
-0.04339 

(-7.27980759) 
-0.0441 5 

'(-1 3.65544522) 
-0.04551 

(-93.90661 793) 
-0.04594 

(-3 12.90699489) 
-0.0461 6 

(-881.40719686) 
-0.04622 

(-1273.65724063) 
-0.04630 

(-2882.4073081 8) 

3-2s 

-0.0450 
(-1.47777253) 
-0.0472 

(-1 4.32456489) 
-0.0509 

(-1 02.68 195335) 
-0.0519 

(-346.498 3 1 600) 
-0.0523 

(-982.22383604) 
-0.0526 

(-1 421.58688 1 69) 
-0.0528 

(-3225.67480824) 

4- IS 

-0.0899 
(-1 4.66295228) 

-0.1758 
(-1 10.28684560) 

-0.2140 
(-377.80945430) 

-0.4168 
(- 1079.09690384) 

-0.4811 
(-1 564.74096847) 

-0.6996 
(-3561.673481 14) 

10-1s 

-0.3706 
(-128.91 769539) 

-0.3925 
(-506.36060249) 

-0.4046 
(-1 552.96299231) 

-0.4077 
(-2292.30443949) 

-0.41 24 
(-5374.37544393) 

We experimented with several basis sets, the best set was used to compute the energies reported in Table 
3. In Table 4 each basis set is characterized by the number of primitive and of contracted functions of 
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s, p ,  d through h and i type Qn all the sets we have used the same number of d ,  f, g and h functions). 
The values of a1 and C are also given, together with jminr the minimum value for the index j, again for 
the s, p ,  d through h and i symmetry types. 

The correlation energies are reported, together with the total SDCl Energies, in Table 3 for selected 
members of the He (lsZ,lS), Li (Is2 2s1,2S), Be (ls2 2s2,IS) and Ne (ls2 2s2 2p6,IS) series, up to the Xe 
ions. Figure 1 summarizes the results for the correlation energy. Due to the limitations of the single 
reference SDCI approximation, the quality of the results decreases as the number of electrons increases. 

_ _ _ _ _ _ _  3 e  
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,.,' 3 0 . 5 5  .....' 
,," d 

- * ,...' - . - . - . - . 
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Atomic number 

Figure I .  Correlation energies (in a.u.) for the 2, 3, 4 and 10-electrons isoelectronic series. The lines fit 
the data of Table 4. The stars are semiempirical estimates taken from Refs. 43 and 44. 

Thus in Table 3 we report one more figure than physically meaningful (to allow for roundon) for the 
correlation energies, but maintain eight decimal figures, namely the numerical accuracy corresponding 
to the used basis sets, for the total energies. The extension of this study to Multi Reference CI with 
ATOMCI is currently under way. 

TABLE 4. Li(2S) ground state. Contributions from each symmetry to the total and correlation energies 
and comparison with the resulls of ref 50. 

~ ~ ~~ ~~ 

Basis Tot. EnergyW Tot. Energy (b) Cor. Energy@) 

S -1.448661 
SP -1.413834 

-1.416760 
-1.411399 
-1.411485 

SPd 
SPdf 
SP4-S 
W f g h  
spdfghi 

-1.4486658 
-1.4138004 
-1.41 661 56 
-1.411381 I 
-1.4176244 
-1.4777252 
-1.4711125 

-0.01 59390 
-0.04 10136 
-0.0439488 
-0.0446550 
-0.0448976 
-0.0449984 
-0.0450458 

~ ~~ ~~ ~~ 

(a): Limits r orted for the MCllF calculation of Ref. 50. e): This w o X  

In Fig. 1, the results are interpolated to show the overall behavior of the correlation energy for each 
isoelectronic series. The values estimated by CIementi4W for some members of each series are also 
reported for comparison. Ctementi's estimates are practically indistinguishable from our calculated 
values for the 2 and 3-electron series on the scale of the figure, and thus only two reference points (for 
the He and Li neutral atoms) were drawn. The estimates43 for Z greater than 10 were reported as 10% 
accurate up to Z equal to 20, and as order of magnitude of the correlation energy for Z beyond 20. 
Notice however that the present results agree very well with the estimates of Ref. 43 except for the 
10-electron isoelectronic series, especially for high Z, where they differ by as much as 30% (-0.4017 vs 
-0.5643 for Kr+26). Since it appears unlikely that our approximations might result in such a large error 
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in the total energies for the higher members of the series, we conclude that the correlation energy for the 
Ne isoelectronic series for high values of Z in Ref. 43 was overestimated. 

For the 2-electron series the correlation energy is accurate to about the filul decimal figure, but the 
accuracy of the non relativistic total energy is 1 part per 106 a.u. for He and goes up to 1 part per 109 
for Xe+ 52 As known, the most accurate computations on the two electron series are those by Pekeris,45, 
46 later often reproduced, He being a test case for many models.47 

TABLE 5. CPU time (seconds, s, or hours, h, on an IBM 3090 V400) and storage (Mbytes) require- 
ments for the atomic C1 calculations on the neutral members of the isoelectronic series here considered, 
and estimates for some larger systems. 
System GTO's(a) CSF'sW CPU time Elaps. time (c) 2-el int. (d) Virt. mem. Disc mem. 
- ~~~ 

He 126 1241 1300s 5760s 21.0 200 370 
Li 107 2526 855s 4320s 11.5 125 230 
Be 100 3037 10 50s 7800s 8.3 100 1 60 
Ne 100 10573 4350s 19.6h 8.3 220 410 

(Kdj) 147 21 SO00 420h(0 23000h (g) 39.0 3700 (0 7000(0) 
(Ad@ 124 47000 21h(0 590h (9) 19.0 700 (0 1200(0) 

(a): Number of basis functions. 
(b): Number of configuration state sunctions. 
(c): Total elapsed time in seconds (8) or hours (h). 
(d): Number of computed and stored two-electron integrals (millions). 
(e): Rough estimates for an hypothetical SDCl calculation involving 26 s, 20 p ,  17 df ,g ,h and 1Oi 
GTO's. 
(1): Estimated by quadratic extrapolation of the CPU data. 99% and 99.9% of the time would be taken 
by the generation of the hamiltonian matrix elements and by its diagonalization for Ar and Kr respec- 
tively. 
(g): Estimated by assuming a linear relationship between the ratio Elapsed time vs CPU time and the 
number of electrons in the system. 
0): Estimated from the number of two electron integrals and by a linear fitting of the data for the 
storage needed to corn Ute and save on disk the energy matrix. 
(j): p u g h  estimates k r  an hypothetical SDCI calculation involving 30 s, 24 p ,  20 df,g,h and 13i 
GTO s. 

For the 3-electron series the accuracy remains nearly the same as for the 2-electron series, because, as 
long ago realized, the 1s-2s interpair correlation energy is small43-48 and thus SDCI yields energies not 
much different from Full CI. As far as we know, the best results for the Li ground state energy are 
those by Larsson.49 Notice that the total energy for the top member of the series, Li, compares very well 
to the very recent result of a large scale MCHF calculation by Sundholm and OlsenSO involving full 
scale C1 within up to 85 orbitals of symmetries ranging from s to g, for a total of 11 514 configuration 
state functions in D,, symmetry (-7.477773 a.u. vs -7.477485 a.u.). In Table 4 the contribution to the 
total energy and to the correlation energy from each symmetry block are reported and compared with 
the analogous limits for the calculation of Ref. 50. Our values appear to be very close to Sundholm and 
Olsen's limits, and the inclusions of several g, h and i functions seems to be erective in further 
improving the final result. 

For four electrons the limitations of SDCI start to become apparent and the old estimates of -0.094 
a.u.48,51 for Be is likely nearer to the exact one than the value of -0.0899 a.u. reported here. Bunge's 
very accurate calculated value for the correlation energy of Be is -0.0943 a.u.52 Our result improves by 
including contributions from higher excitations. Indeed for one member of the series, Ne+6, we 
repeated the calculation by adding to the singles and doubles a perturbative selection of triple and qua- 
druple excitations from the H F  reference state to the lowest two atomic natural orbitals, ANO's, of the 
s, p and d symmetries obtained in the single reference SDCl calculations. The value of the correlation 
energy changed from -0.1758 a.u. to -0.1789 a.u. 

The steep increase of the correlation energy along the isoelectronic series has been analyzed in detail 
elsewhere.4433 Here we observe that the erect is essentially linear in Z and the 4-electron correlation 
energy becomes larger than 10-electron correlation energy for Z around 28 (see Fig. 1). As we have 
previously stressed,4433 this energy should not be considered as the true correlation energy for the four 
electrons in the two pairs 152 and 29 ,  but rather an example of a strongly multiconfigurational elec- 
tronic structure which is very poorly described by the single determinant approximation. In the limit of 
high values of Z the r)s and np orbitals are energy degenerate. Indeed a two determinants MCSCF 
function was suficient to bring about a constant value for the 4-electron series$ namely -0.052, -0.055, 
-0.055, -0.056, -0.058, -0.059, -0.062 for Be, B+l ,  C+2, N+3, 0 + 4 ,  F + 5  and N e t 6  respectively. 
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The computed correlation energy for the 10-electron isoelectronic series is about 95% of the estimated 
tota1.48 The previous value by Sasaki and Yoshimine38 for Ne, -0.3697 a.u., compares nicely with our 
-0.3706 a.u. and with Veillard and Clementi's estimate of -0.389 a.u.48 Adding a perturbative selection of 
triple and quadruple excitations from the HF reference state to the lowest two ANO's of the s, p and d 
symmetries obtained in the single reference SDCI calculations yielded a correlation energy of -0.3800 
a.u. fqr Ne (almost 98% of Veillard and Clementi estimate) and -0.3941 a.u. for, Ar + 8. 

Let us now comment on the computation time, fast memory and auxiliary storage needed for these 
computations in order to extrapolate, for example, to 18- (Ar) and 36- (Kr) electron systems. We shall 
consider S states or even closed shell to make the estimate somewhat simpler. In Table 5 we give the 
pertinent informations on the CPU time, the total elapsed time and the storage requirements for the 
atomic CI calculations on the neutral members of the isoelectronic series here taken into account. Both 
the amount of memory required and the time depend strongly upon the number of the two electron 
integrals computed and stored and upon the number of configurations. While almost 80% of the time is 
consumed in computing and transforming the integrals for He, approximately 90% of the time is taken 
by the evaluation of the energy matrix and by the solution of the diagonalization problem for Ne. 
Approximately the same percentages apply to the amounts of storage needed to store the integrals and 
the energy expression. As the,number of configurations increases, so does the dimension of the CI 
matrix and the time to diagonalize it. In Table 5 we report also a rough estimate of the time and 
storage requirements which can be extrapolated for some larger systems. The single reference SDCI 
calculations for argon and krypton would take approximately 25 days and 2.5 years respectively, and 
noticeable amounts of fast and disc memory. 

MOLECULAR CLUSTERS WITH QUANTUM MOLECULAR DYNAMICS 

Let us now move to an example of a relatively large molecular system for which we wish to determine 
the equilibrium geometry; we shall assume no symmetry point group, since the geometry determination 
is one of the main goals. 

The study of carbon clusters has attracted attention recently and in the past.54 Both experimental and 
theoretical methods have been employed to explain the unusual predominance of the 60-atom cluster in 
the mass spectra obtained with the laser vaporization cluster beam technique.55-57 Experimental evi- 
dence has shown that (i) the dominance of c60 increases with longer clustering times, (ii) both c 6 0 +  and 
c60. are  dominant clusters, (iii) there exist a special binding site for carbon-metal complexes, c6d< 
(X=La,  Ca, Sr, Ba), and (iv) the c60 cluster is not reactive. These results have led researchers to 
believe that a single structure is responsible for the experimental observations with the most probable 
candidate the truncated icosahedron, the so-called buckminsterfullerene. Having the structure of the 
soccerball, this C,, configuration has 12 pentagonal a>d 20 hexagonal faces with each atom identically 
bonded to 3 atoms. 

Previous theoretical investigations of the C a  structure have been limited to I Iartree-Fock calculations 
and semi-empirical melhods.s6> 57 Due to the large number of electrons the quantum chemical 
approaches have not been able to incorporate all degrees of freedom in the search for the low energy 
structure and since the parameters for the empirical potential are fitted to bulk properties its applica- 
bility to small clusters is unknown. A novel approach to first principles simulations, proposed by R. 
Car and M. Parrinello, allows complete degrees of freedom while deriving the interaction potential 
directly from the electronic ground state.58 The method, involving both density functional theory and 
classical molecular dynamic simulation has been implemented in a study of the sbucture and dynamics 
of the c6q buckminsterfullerene. The method is presently limited to closed shell ground stale functions 
and energies. 

The present calculation of c60, reported elsewhere in detai1,Sg , utilized the Bachelet, Hamann, Schluter 
pseudopotential6o and planewaves for the wavefunction expansion with an energy cutoff of 35 Ryd. The 
Perdew-Zungeral form of the LDA was used for the exchange-correlation energy. The simulation 
employed a supercell of 1 7.5A3 and FCC periodic boundary conditions. Approximately 32,000 
planewaves were required for each state. The "mass", p, was fixed a t  500 a.u. and the time step for 
integrating the equations of motion ( Eqs.(l7) ) was 3 a.u. The simulation required 256MB of memory 
and 90 seconds per iteration on the IBM-3090/600J. The wall-clock time was reduced by a factor of 5 
by running in parallel on 6 processors. T o  obtain the ground-state structure and achieve equilibration 
about 300 hours of 3090/600J cpu time were used. 

The initial c60  configuration had the structure of a soccerball with each bond the same length as in 
graphite. Once a self-consistent solution to the KS equations had been achieved, geometry optimization 
was performed by solving a set of steepest descent equations. The final ground-state structure has two 
different bond lengths, a short bond, 1.389A2, on the edge between two neighboring hexagons and a 
longer bond, 1.448A on the edge between a n  adjacent pentagon and hexagon. The previous quantum 
chemical calculation found similar results with short and Ion bonds of 1.453A and 1.369A, 
respectively.~ The radius of the ball from the present calculation, h A ,  agrees with the experimental 
estimate of 3.5A.55 
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SCF Energy (Kcal/mol) 

Cohesive Energy 

Ionization potential (eV)(d) 

1 Correlation (Kcal/mol) 

Electron aflinity (eV) 

The ground-state structure obtained from the density functional calculation has been used as input into 
a Hartree-Fock calculation where the bond order (see Table 6) and the SCF energy (Table 7) were 
determined.62 In addition to the energy, Table 7 also contains the results for the electron allinity and the 
ionization potential. 

-37.632 -37.845 -37.819 

124.31 139.74 114 

10.80 9.80 8.24 6.42-7.87 

-13.10918 -13.0900 

3.06 1.57 0.80 2.6-2.8 

TABLE 6. Bond order for the C, cluster 
from Hartree-Fock calculations.62 

Basis set AW 1.4753 
Basis set B(b) 1.491 1 
Benzene (Basis 1.4471 
set A@) 

Bo d rder Bood Order 
AubPe I single 

1.1649 
1.1878 

(a): 9/5 single zeta basis set. See Ref. 62 
(b): 9/5 double zeta basis set. See Ref. 62 

i TABLE 7. Energies, electron aflinity,and ionization potential 
for the C a  cluster from Hartree-Fock calculations. 

(a): 9/5 single zeta basis set. See Ref. 62. 
(b): 9/5 double zeta basis set. See Ref. 62. 
(c): 7/3 double zeta basis set. See Ref. 56. I (d) Koopman’s theorem. 

Figure 2. Phonon density of states (DOS) 
of the buckminsterfullerene. 

W A V E N U M B E R  ( CM-‘  ) 

The dynamics of the Cm cluster were also investigated. The nuclei were first heated by scaling their 
velocities to achieve the target temperature. Since heating the atoms this way caused the wavefunction to 
drill from the Born-Oppenheimer surface, periodic steepest descents quenches for the wavefunction were 
required to regain the self-consistent solution. Once the velocity scaling ended and a final minimization 
for the wavefunction performed, the atoms were allowed to evolve in time according to the equations of 
motions. A total of 1.4 ps (20,000 M D  steps) were simulated following the velocity scaling. After a 
period of equilibration the atomic trajectories were analyzed and the phonon density of states deter- 
mined. In Fig. 2, the phonon spectrum is presented. The high ( 1311 cm-1 ) and low (452 cm-1) fre- 
quency Ag modes are expected to be Raman active and should be observed in future experimenb.63 

So far the CP method has been primarily limited to semi-conductors in various states, bulk, liquid and 
clusters. In order to extend the method to more complex systems involving localized electronic density 
there is a need to include mixed basis sets in the expansion for the wavefunction. Work is in progress in 
our laboratory along this line. 

Next we shall move to another example of molecular dynamics simulation, this time with hydrogen 
atoms and hydrogen bonds, where it appears that the quantum molecular dynamics approach by Car- 
Parrinello might not yield accurate results. 

MOLECULAR DYNAMICS OF LIQUID WATER WITH A N  AB INlTlO 
POTENTIAL 

Recently we have, once more, re-visited6465 the task of formulating a new ab inirio potential for the gas, 
liquid and crystal phases of water, which improves the MCY (Mabuoka Clementi Yoshimine) two-body 
potential66 by including a polarizable water model in place of the computationally expensive three-67 
and four-body68 corrections. The previous preliminary results64 (limited to a truncated expression of the 
model) are now replaced with MD.simulations -below summarized- where the full polarization mode164 
is tested. The new potential is designated as NCC, a short form for Nieser-Corongiu-Clementi. I t  con- 
sists of two parts 

vNCC = C [ vtwo-~, ( i , i )  1 + vpOl (4) 
i ,  jei 

where the pairwise additive part of the potential is essentially the MCY66 (refitted and with a few new 
terms).M 
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The second part of VNCC is a polarization term. Previous computations, where three 67~59 -71 and four- 
body68 corrections were considered, have shown that the many-body corrections are necessary for accu- 
rate quantitative predictions. However, the computational time increases dramatically when the 
two-body MCY potential is extended with three- and four-body corrections, term by term. Therefore we 
require a computationally less expensive algorithm which takes advantage of the "large memory" not 
available on previous computers. 

In the NCC potential we chose an explicit representation of the polarization eKects7UGclo) by inducing 
dipole moments on every interacting molecule. The permanent dipole moments of the water molecules 
are  represented by three point charges per molecule. The polarization on one molecule is hence prima- 
rily due to the global point charge distribution of the surrounding matter. These induced dipole 
moments in turn cause polarization on the other molecules and thus this erect must also be included in 
the polarization potential. The induced polarization is, as usual, taken as a linear response to the elec- 
tric field since the field is not very large 

( 5 )  pi;d = ii A 1  EIO' 

where pitd is the I-th induced moment on molecule i. The polarizability ' z l A  is assumed to be a static 
property of molecule i. 

In the spirit of deriving a nonempirical potential to be used for liquid water simulations, all parameters 
of the NCC potential have been fitted to ab inirio calculated data. We refer the interested reader to 
Refs. 64,65 where the ah inirio calculations of interaction energies for various geometries of 250 water 
trimer and 350 water dimer configurations are discussed (a list of the interaction energies and geom- 
etries are  given in Ref. 64b). We use the ab initio interaction energies of trimers of water molecules to 
fit the many-body parameters, namely in the parameterization of the locations of the induced dipole 
moments and the point charges, as well as the polarizability and the value q of the point charge. This 
set of electrostatic parameters was then used -unmodified- in the fit of the two-body potential to ab initio 
calculated interaction energies of water dimers. 

One important characterization of the water dimer potential surface is its absolute minimum, i.e. the 
most stable water dimer configuration. This configuration is predicted as an open form with a nearly 
linear hydrogen bond. The binding energy is computed as 5.18 kcal/mole at  an intermolecular 0-0 
distance of 2.97 A. The potential around this configuration is very flat. In comparing this data with 
experimental values, care has to be taken since the available experimental results span a rather broad 
range, particularly with respect to the binding energy.73 Recent results74~75 seem to settle around 5.3 
kcal/mole; possibly 5.1 2 0.3 kcal/mole is an acceptable estimate. 

The reliability of the NCC potential is assessed by simulating water properties in the gas phase 
(monomer and dimer), in the liquid phase (static, dynamic and collective properties), as well as in the 
crystal phase (Ih phase of ice), thus covering a very extended range of properties seldom reliably simu- 
lated by the same model, without ad hoc reparametrization. 

In Fig. 3 we report a comparison of the X-ray and neutron beam scattering intensities obtained with the 
NCC potential and by experiments76t77 (top insets). We recall that a correct simulation of the second 
peak in the liquid water oxygen-oxygen pair correlation is a necessary requirement to obtain reliable 

0 . 4  

- 0 . 2  

I 

t - NCC 
Second V i r i a l  __.__.. Exp.  

100 

Figure 3. The X-ray (top left), neutron (top right) scattering intensities, pair correlation function goA0 of 
ice (bottom left), and second virial coeflicient of steam (bottom right) from the NCC potential and 
experimental data. 
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X-ray and neutron beam intensities. To this figure, we add a comparison of the oxygen-oxygen pair 
correlation function of the ideal lattice of Ih ice78 ahd the one obtained with a 20 picosecond MD simu- 
lation for a periodic system of 192 water molecules a t  50 K (left bottom inset). Finally, in Fig. 3 we 
include the computed and experimental79 second virial coefficient of steam (bottom right inset). We 
note, that the second virial coefficient is simulated without accounting for the water vibrational modes80 
(the present simulation assumes water as a rigid molecules). 

Fig. 4 shows the good agreement between the NCC pair correlation functions and those derived from 
experiments by Narten76 and Soper81 (left insets). We have also added the pair correlation functions by 
Cieplak, Kollman and Lybrand,82 CKL, (right insets) who use a polarization potential similar to the one 
of Ref. 64, however, with empirical parametrization. The ab inifio potential appears to be more realible 
than the empirical one. 

Below we report simulated quantities obtained with NCC. These are the evaporation energy (-10.65 
kcal/mole without vibrational correction vs -9.98 kcal/mole from experiments83 ), the average dipole 
moment in liquid water a t  room temperature (2.8 D vs an inferred experimental value84 of 2.45 D), the 
dipole moment of one water molecule (1.85 D vs 1.83 D from experiments84 ), the heat capacity a t  
constarit volume (17.6 cal/(mole K) vs 17.9 cal /(mole K) from experiments85 ), the diffusion coetlicient 
(2.5~10-5 cm2/sec vs 2.4~10-5 cm2lsec from experiments86 ), the IH-NMR relaxation time 7 2  (1.8f0.2 ps 
vs 2.0 ps from experiments87 ), the low frequency sound mode (1280 m/sec vs 1390f100 from exper- 
iments88 ), the high frequency sound mode (3200 m/sec vs 3310f250 from experiments89 ). The com- 
puted dimer energy is -5.1 8 kcal/mole compared with an experimental value73-75 of -5.4f0.2 kcal/mole; 
despite the good agreement, we are of the opinion that these values are somewhat overestimated. The 
computed second virial coefficient values in cm3/mole are -596 (at T- 373 K), -239 (at T-479 K), -127 
(at T= 573 K) and -77 (at T= 673 K), to be compared with the experimental values79 of -580, -212, 
-1 17, and -73, respectively. From analysis of the rotational autocorrelation function, we obtain an IR 
librational band with a peak at  about 700 cm-1 to be compared with the experimental90 band also at  
700 cm-1. The time of flight and the density of states, computed from the coherent and incoherent 
structure factors, respectively, are  in qualitative agreement with available low resolution experiments.91~92 
The computed pressure is -1100 atm. The somewhat short distance position, relative to experiments, 
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of the first peak for the goo(r) , the possibly a bit overestimated binding energy of the dimer, and the 
error in the pressure can be “corrected” by forcing less binding’in the potential; indeed, by decreasing 
one of the parameters by only 1.2% one can obtain a nearly exact position for the first peak, a pressure 
around 300 atm and an evaporation energy of 9.92 kcal/mole. Preliminary results93 from a simulation 
with a flexible water model potential predict an evaporization energy around 10.3 kcal/mole and a pres- 
sure of about -1800 atm. Other data are  not too dissimilar from those of Ref. 94, but a much longer 
simulation is needed to confirm the above data. This concludes the simulations carried out to test the 
NCC potential; we note that the above list is, to our knowledge, the most comprehensive one in litera- 
ture to test the reliability of a potential -with the same model and parameters- in simulations of water in 
the gas, liquid, and crystal phases. 

The M D  simulations for the liquid water have been obtained from a periodic system of 51 2 water mole- 
cules, at 310 K, using a sixth order Gear-predictor corrector algorithm, Ewald-sums, a cutoff radius of 
12.4 A, a time step of 0.5 femtoseconds, and a simulation length of 32 ps afler equilibration. The M D  
computer program, KGNNCC, for the NCC model, is made available to the interested reader, as part 
of the MOTECC-90 initiative.95 The computer time for this simulation is 53 hours for equilibration and 
34 hours for the collection of statistics on an IBM ES/3090-600J running in parallel. The entire calcu- 
lation takes about 40MDytes of main memory. The simulation with the flexible model takes 4 times 
longer, due to the smaller time step. Notice that hy increasing the sample from 512 to 1000 molecules, 
the execution time increases by a factor of about 8. 

CONCLUSIONS 
All the computations above neglect relativistic effects. Whereas this might not be too inconsistent for a 
computation on H a  or €40 aiming at  1 to 10 cm-1 accuracy, it clearly becomes a more and more ques- 
tionable approximation when one deals with molecules with atoms past Neon and aims at  millihartree 
accuracy while neglecting relativistic effects. It has been noted long ago96 that relativistic effects scale as 
the second to third power of the atomic number (Z2 and 23) while correlation effects scale with the 
number of electrons (Z for.neutral atoms) and are taken over by the former (the relativistic ones) a t  
about Z =  12. This “caveat” will likely be acknowledged more and more in the coming years. If we 
compare an Ilartree-Fock computation with a Fock-Dirac computation for a given molecule and with 
the “same” basis set we note that the latter will require about 5 to 10 times more CPU time than the 
former. There are  three main reasons for this.97 Firstly, the kinetic balance98 brings about a n  effective 
increase in the starting basis set; then the SCF part is more complex in the Fock-Dirac formalism, and 
finally if one starts with Cartesian Gaussian functions there is the need of a transformation to spherical 
functions. In conclusion, presently relativistic computations are problematic mainly because we are still 
searching for proper methods, but once this problem is solved, these will turn out to be five to ten times 
more expensive than equivalent non relativistic computations, a factor which is offset by the perform- 
ance gain of the Vlth generation relative to the IVth. 

Let us now consider the 113 surface with a 1.0 to 10.0 cm-1 accuracy and with the llCl technique. From 
the discussion in Section 2, it appears that - assuming one has improved the numerical analyses and the 
code - a reasonably accurate surface can be obtained with a 50-100 GFLOPS system. Keeping in mind 
the recent performance announcements particularly from the Japanese computer industry, there is 
reason to assume that this problem will have an accurate HCI solution before the end of this century, 
namely from the Vlth generation computers. However one could consider alternatives, particularly 
Quantum Monte Carlo techniques1 or geminal techniques3 

Essentially the same conclusion holds for atomic computations with the CI technique: systems with a 50 
GFLOPS performance could do the job. There is, however, an apparent need to expand the ATOMCI 
code either in the direction of Multi Reference CI or of MCSCF followed by extended CI. Present 
efforts by Prof. Sasaki and coworkers to parallelize the code are another most welcome step. However 
one could also look at  alternatives like “direct” techniques,99 thus using many more configurations and 
at  the same time circumventing the 1/0 bottleneck. Rut it is unlikely that we will see many computations 
with 30-40 electrons and with an absolule accuracy of 0.001 a.u. in this century. 

Let us now move to large systems, for example liquid water, to be simulated by a sample of 1000 mole- 
cules of water using molecular dynamics. This larger than the usual number of water molecules has 
been chosen mainly to ensure proper treatment of collective effects, like the dielectric constant and 
sound wave simulations, where there are  large fluctuations. Can we simulate this system using quantum 
mechanics a t  each time step for energy and forces? Alternatively stated, can we use the Car-Parrinello 
technique?58 Scaling from 32000 plane waves needed for 60 carbon atoms to the 3000 atoms of the 
1000 water molecules, we estimate the need of about 1 . 5 ~ 1 0 6  plane waves. The corresponding CPU 
time on an IBM 30905 is conservatively about 90 hours per time step with a storage requirement of 20 
Gbytes. This is contrasted to about 1.4 minutes per time step using a6 initio potentials of NCC type and 
a flexible water. While a single Car-Parrinello time step might be reduced to less than one hour on a 
large Vlth generation computer, the 105 required time steps seem to make this task unfeasible within this 
century. Notice that the number of plane waves could be considerably smaller by using a mixed basis, 
namely plane waves and Gaussian orbitals localized on the nuclei. Work is in progress in our lahora- 
tory along this line. 

We would like to forecast that direct use of quantum mechanics will be more and more diffuse in molec- 
ular dynamics computations. Considering the analysis made above however, it seems that one will have 
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to merge energies and forces quantum mechanically obtained with energies and forces derived from a6 
initio potentials. This will be particularly important for the study of the active site in protein and 
enzimes. Indeed, only in the neighborhood of the active site one will follow the reaction at the quantum 
mechanical level while all the remaining interactions would be treated at  the classical level, using ab 
inifio derived potentials. A precursor of this approach is a study of the proton transfer in papaine.100 

The common denominator in our conclusions is that if we rely mainly on the increased performance 
offered by the computer industry, then computational chemistry will only inch forward at  best. The main 
avenue lies in alternative methods and new techniques. Thus Quantum Monte Carlo, a6 inifio derived 
polarization potentials, Car-Partinello and its extension (as outlined above), MBPT, geminals and direct 
techniques seem to represent the future of quantum chemistry. At the other side of the spectrum, semi- 
empirical methods, including Density Functional added to the I-lartree-Fock, should be also considered. 
Finally, techniques designed to move away from basis set expansion, toward numerical methods, should 
be examined with rigor, both to escape the BSS error and the N4 dependency. 
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