Reaction of acetylenes with edge double-bridged triruthenium complexes

H. D. Kaesz, Ziling Xue, Yea-jer Chen, Carolyn B. Knobler, W. Krone-Schmidt, W. J. Sieber and N. M. Boag

Dept. of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA 90024-1569, USA

Abstract - The complex Ru₃{u-H,u-O=C(NMe₂)}(CO)₁₀, [1], reacts with aryl acetylenes at 25 $^{\circ}C$ (Ar = Ph, p-CH₃C₆H₄, or p-(CH₃O)C₆H₄) giving only dinuclear products $Ru_2\{\mu=0=OMe_2,\mu=0,\eta=C(Ar)=OH(Ar)\}(OO)_6$, [5a,b,c] in 50-80% yield, and $Ru_2(\mu-n^2, n^4-C(Ar)=C(Ar)=C(Ar)=C(Ar))(OO)_6$, [6a,b,c], in 20-25% yield. Crystal and molecular structures have been determined for [5b] and for $Ru_2\{\mu=O=OMe_2,\mu=\sigma_n-C(Ph)=CH(Ph)\}(OO)_5(PPh_3),$ [9], both existing exclusively as the <u>vic</u> isomers in the solid state. At -50 $^{\circ}$ C, ¹H or ¹³C NMR spectra of these complexes indicate two isomers in solution (vic and <u>dem</u>) which are rapidly interconverting. Through complexes of $Ph_2^{13}C_2$, it is possible to assign the predominant species in solution as the gem isomer in both cases. A Reaction of phenylacetylene with [1] gives an unstable product which can be isolated only as the PPh3 substituted complex $Ru_2\{\mu-O=ONMe_2,\mu-\sigma, n-C(Ph)=OH_2\}(OO)_5(PPh_3), [10]. Only the Markownikoff ad$ duct is seen, and no NMR signal averaging occurs between the vic and gen isomers at 23 °C. Crystal and molecular structure reveal exclusively the gem isomer in the solid state. ZZReaction of [1] with hexafluorobut-2-yne gives the dinuclear adduct, $Ru_2\{\mu-H,\mu-O=CNMe_2,\mu-C(CF_3)=C(CF_3)\}(CO)_6$, [11], in 56% yield, with no evidence of a μ - σ ; η -isomer. \Box Complex [5b] reacts with propyne at 23 °C to give the all-cis-1-butadienyl complex Ru2{u-O= CNMe2, µ-o; n-CMe=C(H)R}(CO)6, R= cis-C(p-tol)=CH(p-tol), [12], 48% yield; crystal and molecular structure show the <u>gen</u> isomer in the solid state.

INTRODUCTION

Previously, we reported the reaction of but-2-yne with $Ru_3\{\mu-H,\mu-O=C(NMe_2)\}(OO)_{10}$, [1], which gives the trinuclear η^3 -methallyl complex $Ru_3\{\eta^3-CH_2CHCH(Me)\}\{\mu-C(O),\mu-O=C(NMe_2)\}(OO)_8$, [2], as principal product along with small amounts of two dinuclear complexes $Ru_2\{\mu-O=CNMe_2,\mu-O;\pi-C(Me)=CH(Me)\}(OO)_6$, [3], and $Ru_2\{\mu-O=CNMe_2,\mu-O=C-CMe=CMe-(\eta^2-CMe=CH(Me)\}(OO)_5$, [4] (ref. 1). By contrast, we found that aryl acetylenes or hexafluoro-2-butyne give principally dinuclear products whose elucidation through 1^3 C-enriched materials and further structural and synthetic studies are presented here.

STUDIES OF THE μ - σ , π -VINYL COMPLEXES OF DIARYL ACETYLENES

There is a problem in assigning solution structures of the μ - σ , η -vinyl complexes, as illustrated in Fig. 1. The presence of principal resonances accompanied by a closely matching set of smaller peaks indicates two isomers in solution in unequal population. For example, two doublets are identified, each as the ²C resonance of the μ - σ , η -vinyl group in the two isomers. The two sets of signals merge at +30 °C (ref. 1) indicating rapid equilibration in solution.

Assignment of the sets of resonances to the two isomers was not possible, nor was it possible to identify the ¹C resonance of the μ - σ , η -vinyl group. For example, eight maxima are observed in the carbonyl region ($\delta = 210$ to 185 ppm), thus the resonance of ¹C must be located there. However, none of the ¹H-coupled resonances (see insert in Fig. 1) shows doubling, due to the fact that the coupling constant $J^2(^{1}H-C=^{13}C)$ must be close to zero (ref. 2). We thus prepared a ¹³C-enriched acetylene and its diruthenium complexes according to the equations shown in Scheme 1 (ref. 3).

Fig. 1. $^{13}C(^{1}H \text{ coupled})$ NMR, 125.8 MHz, CD_2Cl_2 sol'n for [5a] at -50 °C.

The ¹³C NMR spectra of $\operatorname{Ru}_{2}(\mu-O=CNMe_{2},\mu-\sigma,\pi^{-*}C(Ph)=^*CH(Ph)\}(CO)_{6}$, [7], and $\operatorname{Ru}_{2}(\mu-O=CNMe_{2},\mu-\sigma,\pi^{-*}C(Ph)=^*CH(Ph)\}(CO)_{5}(PPh_{3})$, [8], *C= ¹³C, are shown in Fig. 2. The ¹C resonances are easily identified in each of the two spectra as the strong doublets arising from ¹³C-¹³C coupling in the doubly labelled σ,π -vinyl group. Each strong doublet represents the ¹C resonance of the major isomer in solution and is accompanied by a corresponding resonance of lower intensity due to the minor isomer. In the upper scan of Fig. 2, both the principal and the accompanying ¹C resonances are doublets. In the lower scan, however, the ¹C resonance of the major isomer is a doublet but that of the minor isomer is a <u>doublet of doublets</u>. This must arise from ³¹P coupling, and would be expected to be greater in the <u>vic</u> isomer (10 Hz) than in the <u>gem</u> isomer (not resolvable).

From the above analysis, we assign the <u>gen</u> isomer as predominant in solution for [8], which is presumably also the case for [7]. Due to the similarity in the ¹³C NMR spectra of the diphenyl and di(p-tolyl) acetylene derivatives, [5a] and [5b], we assume similar distribution of isomers in their solutions. Thus, predominance of the <u>gen</u> isomer is indicated in solution while the single crystal obtained for [5b] is exclusively the <u>vic</u> isomer (ref.1).

Scheme 1 Synthesis of
$$\operatorname{Ru}_{3}\left[\mu = \operatorname{OCNMe}_{2}, \mu = \sigma_{1}\pi^{-*}C(\operatorname{Ph}) = CH(\operatorname{Ph})\right](\operatorname{CO})_{-}L$$

 $L = CO, [7]; L = \operatorname{PPh}_{3}, [8].$
Ph*C(O)OH $\xrightarrow{a. \operatorname{SOCl}_{2}}$ Ph*C(O)Cl $\xrightarrow{b. \operatorname{Bu}_{3}\operatorname{SnH}}(\operatorname{PdL}_{4}, \operatorname{cat.}) = \operatorname{PPh}_{3}$ Ph*C(O)H
 $C. \operatorname{NaCN}$
Ph*C(O) = C(O)Ph $\langle -\frac{d. O_{2}, \operatorname{CuSO}_{4}}{(\operatorname{PdL}_{2}, \operatorname{cat.})} = \operatorname{PPh}_{3}$ Ph*C(H)(OH) = C(O)Ph
 $e. \int \operatorname{NH}_{2}\operatorname{NH}_{2}$
Ph*C(INNH₂) = C(INNH₂)Ph $\xrightarrow{f. \operatorname{HgO}}$ Ph*C=*CPh (overall yield: 25%)
 $[1] \int 25 \operatorname{^{OC}}/24 \operatorname{hr}/\operatorname{hexane}$
 $[8] \langle -\frac{\operatorname{PPh}_{3}/25 \operatorname{^{OC}}/1 \operatorname{min}_{2}/\operatorname{hexane}}(71) (60\% \operatorname{yield}, \operatorname{based on} [11])$
*C = $13c$

Fig. 2. 13C(1H) NMR spectra, 125.8 MHz, in CD₂Cl₂, -50 °C, carbonyl region, for Ru₂(μ -O=CNMe₂, μ -o, π ^{-*}C(Ph)=*CH(Ph))(CO)₅L. Upper trace: L= CO, [7]. Lower trace: L= PPh₃, [8].

In order to ascertain the predominant isomer in the solid state for a substituted derivative, a structure was determined for $Ru_2\{\mu=O=CNMe_2,\mu=\sigma,\eta=C(g=tol)=CH(g=tol)\}(CO)_5(PPh_3)$, [9], see Fig. 3; only the <u>vic</u> isomer appears in the solid state, as in the unsubstituted derivative [5b] (ref. 1).

Fig. 4. $1^{3}C(1_{H-coupled})$ NMR spectra at 22.5 MHz, in CD₂Cl₂, +23 °C, showing population-weighted chemical shift-averaged resonances for the ¹C and ²C σ, π -vinyl group resonances (among other peaks) for Ru₂(μ -O=CNMe₂, μ - σ, π - *C(Ph)=*CH(Ph)}(CO)₅L. Upper trace: L= CO, [7]. Lower trace: L= PPh₃, [8].

At room temperature, the separate ¹³C NMR signals of the <u>gen</u> and <u>vic</u> isomers are seen to merge giving signals shown in part in Fig. 4 above. The averaged ¹C resonances do not show any coupling to ¹H; the splitting observed in these peaks is the ¹³C-¹³C coupling with a small ³¹p-¹³C(1) of <u>ca</u> 3 Hz in complex [8] (lower trace), observed in the limiting spectrum at -50 $^{\circ}$ C.

The resonances for the ²C atoms have not completely coalesced at 23 °C, the highest we could reach without thermal decomposition. In both the upper and lower traces of Fig. 4 these still broadened resonances show a peak-to-peak separation close to the $^{1}H^{-13}C$ coupling observed in the limiting spectra (see Fig. 1). Preservation of the full $^{1}H^{-13}C$ coupling in the averaged ^{2}C signals indicates a tautomerization pathway involving the intact vinyl group, see path A in Fig. 5. Motion of hydrogen in the equilibration (Path B) can be excluded since it would have required a smaller peak-to-peak separation arising from an average between J ($^{1}H^{-13}C(1)$) = <u>ca</u>. 0 Hz and J ($^{1}H^{-13}C(2)$) = 157 Hz.

Fig. 5. Possible pathways for σ_{nn} -vinyl group tautomerism.

STUDIES WITH OTHER ACETYLENES

The reaction of phenylacetylene with [1] gives an unstable product which can be isolated only as the PPh₃ substituted complex [10], Scheme 2. NMR spectra again indicate the presence of two isomers, <u>vic</u> and <u>gem</u>, but only of the Markownikoff adduct as shown in Scheme 2: the ²C resonances in the ¹H-coupled-¹³C NMR spectrum of [10] appear as triplets, δ = 92.88 and 59.24 ppm, $J(^{1}H-^{13}C(2)) = 159$ Hz, respectively.

No merging of the signals of the vic and gem isomers of [10] is observed at 23 $^{\circ}$ C, denoting a much slower tautomerism as compared to complexes of diphenyl or di(g-tolyl) acetylenes. There is no phenyl group substituent on 2 C of the $\sigma_{,\pi}$ -vinyl group in [10]; this suggests a phenyl group stabilized charge-transfer intermediate or transition state may be traversed for the intact vinyl group tautomerism. Path A of Fig. 5. Charge-transfer structures for the tauto-

merism are supported by molecular orbital studies of methylene-bridged transition metal complexes (ref. 4). The M₂C ring system may accommodate six electrons, thus favoring a polar structure for the vinyldimetallocyclopropane.

Crystal and molecular structure of [10] reveal exclusively the <u>gem</u> isomer in the solid, see Fig. 6.

The reaction of [1] with hexafluorobut-2-yne (ref. 5) is shown in Scheme 2. The product, [11], contains an ¹H resonance at -14.60 ppm indicating the presence of hydrogen bridging between the metal atoms. We thus assign a structure as shown in Scheme 2; there is no evidence for any σ_{77} -vinyl adduct. ¹³C NMR of [11] (ref. 5) shows two distinct resonances for each of the two types of carbon atoms in the μ -C(CF₃)=C'(C'F₃) group. NMR studies from -60 to +90 °C show no equilibration of the signals; thus complex [11] does not participate in any rapid tautomerism in this temperature range. This structure type was also excluded from rapid tautomerism for the diphenyl and di(p-tolyl) derivatives, see Fig. 5.

The reaction of [5b] with $CH_3\equiv CH$ was examined, see Scheme 3 (ref. 6). An all <u>cis</u> butadiene telemerization product is obtained which crystallizes as the <u>gen-{µ-O=CNMe2, u-O;</u>, vinyl} isomer, Fig. 7. This product may represent the intermediate leading to the type of complexes [4] and [6] isolated in the reaction of [1] with other acetylenes (ref. 1).

Fig. 6. ORTEP of [10].

 d/\tilde{A} Ru(1)-Ru(2) = 2.720(1) Ru(1)-C(1) = 2.130(6) Ru(2)-C(1) = 2.319(5) Ru(2)-C(2) = 2.331(6) C(1)-C(2) = 1.396(8)

Acknowledgement

This work was supported by a grant from the National Science Foundation (CHE 84-05517), a NATO-SERC fellowship to N.M.B. and a NATO fellowship from the DAAD (German Academic Exchange Service) to W.J.S.

REFERENCES

- W. Krone-Schmidt, W.J. Sieber, N.M. Boag, C.B. Knobler, H.D. Kaesz, <u>Abstracts of Papers</u> <u>Presented at</u>, (a) <u>American Chemical Society 190th Nat'l Meeting</u>, Sept. 8-13, 1985, Chicago, IL, USA, paper INOR 226; (b) <u>the XIIth ICOMC</u>, Sept. 8-13, 1985, Vienna, Austria, p. 351, and, (c) <u>Proceedings of the Fifth Int'l. Symposium on Relations Between Homogeneous and Heterogeneous Catalysis</u>, 15-19 July, 1986, Novosibirsk, USSR, VNU Science Press, Utrecht, Netherlands (1986) p. 837.
- 2. "Carbon-Carbon and Carbon-Proton NMR Couplings" by J.L. Marshall, Vol. 2 in "Methods in Stereochemical Analysis", A.P. Marchand, Ed., (1983) p. 33 ff.
- 3. For the steps shown in Scheme 1:
 - (a) G.A. Braden, U. Hollstein, <u>J. Labelled Comp.</u>, <u>12</u> (1976) p. 507;
 - (b) P. Four and F. Guibe, <u>J. Org. Chem.</u>, <u>46</u> (1981) p. 4439;
 - (c) R. Adams and C.S. Marvel, Org. Synth., 1 (1941) p. 94;
 - (d) H.T. Clarke and E.E. Dreger, ibid., p. 87;
 - (e) and (f) A.C. Cope, D.S. Smith, R.J. Cotter, Org. Synth., 4 (1963) 377.
- 4. P. Hofmann, Angew. Chem. Int. Ed. Engl., 18 (1979) p. 554.
- 5. Yea-Jer Chen, Ph.D. Dissertation, University of California Los Angeles, 1986.
- 6. Wilfried Krone-Schmidt, Ph.D. Dissertation, University of California Los Angeles, 1986.