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Abstract The six types of phase behaviour observed in binary mixtures
are described briefly. Liquid-liquid immiscibility in Type II and
Type III phase behaviour is discussed in terms of pressure-temperature-
composition diagrams. The conditions for the coexistence of two
phases and the conditions for a critical point in both binary and
ternary mixtures are presented. The criticality conditions are given
in terms of both the Gibbs and Helmholtz functions. Methods for
calculating high pressure equilibrium in fluid mixtures using these
conditions together with a one fluid model are discussed. The use of
empirical and theoretically based equations of state to calculate the
Helmholtz function are briefly reviewed and the need for caution when
using this approach is pointed out. Finally the need for a
classification for the phase behaviour of ternary mixtures and for
liquid-liquid equilibrium data of higher accuracy are considered.

INTRODUCTION

Although there have been a very large number, literally thousands, of studies
on liquid-liquid and gas-liquid solubility at or near atmospheric pressure our
knowledge of solubility at pressures of more than a few atmospheres is rather
sketchy. In this article some recent advances in the study of such systems
are described. The term "fluid equilibria" has been deliberately used in the
title but, in some instances, "gas" or "liquid" will be used where
appropriate. Over a century ago Andrews (ref. 1) showed that there is a
continuity of state around the critical point. Normally liquid-liquid and
gas-liquid equilibria are discussed separately but during the last two decades
it has become apparent that the limits between liquid-liquid, gas-liquid and
gas-gas equilibria are not well defined and that continuous transitions occur.
This point has been discussed in several instances by Schneider and coworkers
(ref. 2-5 and also references therein). It is the purpose here to deal briefly
with theoretical approaches and discuss some recent advances. The rapidly
developing area of ternary mixtures is discussed. It is not possible to deal
with even most of the important aspects of phase equilibria here. There are
a number of reviews which deal with most topics to which the reader is
referred (ref. 6-12).

BINARY MIXTURES

In order to discuss fluid phase equilibria of binary mixtures it is useful to
use the phase behaviour classification of Scott and van Konynenburg (ref.
13-15). They proposed that the phase behaviour of binary mixtures could be
classified into six broad groups. They found that five groups could be
predicted using the van der Waals equation of state. The sixth class, which
could not be predicted by the van der Waals equation, arises only in aqueous
mixtures. The pressure-temperature projection of the pressure-temperature
composition diagram of the six types of phase behaviour are represented
schematically in Fig. 1.

Type I. The phase diagram has a simple continuous gas-liquid critical
locus with or without azeotropy.

Type II. The phase diagram is as for Type I but with the addition of
a three phase (liquid-liquid gas) line ending at an upper critical end point,
UCEP, and a (liquid-liquid) critical line starting from the UCEP and rapidly
approaching high pressures. This type can occur with or without azeotropy.

Type III. This phase diagram has two distinct critical lines, one
starts at the critical point of the component with the higher critical
temperature but never approaches the critical point of the other component
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moving rapidly to high pressures. The other line starts at the critical
point of the component with the lower critical temperature and meets a three
phase (liquid-liquid-gas) line in an UCEP. The three phase line may be
between the vapor pressure curves of the two components or may be above the
vapor pressure curves of both components. There are several subgroups of
Type III behaviour depending on whether there is a heteroazeotrope and on the
shape of the critical line starting at the critical point with the higher
temperature.

Type IV. This phase diagram has three distinct critical loci, one of
which (the liquid-liquid critical line) starts at an UCEP on a three phase
(liquid-liquid-gas) line and moves to higher pressures. The second line
starts at the critical point of the component with the lower critical
temperature and ends at an UCEP on a three phase line. The third line starts
at the critical point of the other component and ends in a lower critical end
point, LCEP, on the same three phase line as the second critical line.

Type V. This type is as Type IV but without the liquid-liquid
critical line and three phase line at lower temperatures.

Type VI. This type of phase behaviour is characterised by a
continuous critical locus between the critical point of the two pure
components. However, at lower temperatures there is a three phase line which
is bounded above and below by critical end points. A liquid-liquid critical
line joins these two critical end points. There are several known
configurations of the line joining the ends of the three phase line. In the
example illustrated the liquid-liquid critical line has two branches with a
region of complete liquid miscibility between them.

Type II and Type III phase behaviour have been the most widely studied and
they are discussed in more detail. Only the "general" characteristics of the
type of phase behaviour can be understood from the diagram given above. In

practice solid phases often complicate the diagrams. The pressure—
temperature-composition diagram for Type II phase behaviour is illustrated in
Fig. 2A. It can be seen that the three phase line on the pressure—
temperature projection is derived from three lines on the pressure—
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Fig. 1. Pressure-temperature projections for the six types of phase equilibria
in binary mixtures. A - Type I; B - Type II; C - Type III; D - Type IVE - Type V; F - Type VI. Lines labelled 1 and 2 are the vapor pressures of the
two ccJmp?nents; lines labelled LLG, GL and LL are three phase lines,
gas-liquid critical loci and liquid-liquid critical loci respectively; points
denoted X C are critical points of the pure components.
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P

Fig. 2. Pressure—temperature-composition diagrams for Type II (Fig. 2A) and
Type III (Fig. 2B) phase behaviour. The three phase line is denoted
The region in which two liquids coexist is denoted LL.

temperature—composition diagram representing the composition of gas, liquid 1
and liquid 2. At pressures above this three phase line a maximum of two
phases can coexist. Although four different phases are possible at pressures
and temperatures between the three phase line and the vapor pressure curve of
the more volatile component,it is impossible to have more than two in
equilibrium at any one composition. At temperatures below the upper critical
end point and pressures above the vapour pressure of the more volatile
component,depending on the overall composition it is possible to have two
coexisting (liquid) phases. These liquids can continue to coexist even at
very high pressures, the mutual solubility of the liquids often changes little
even with very large changes in pressure. However, near the critical end
point, i.e. the point on the three phase line at which the two liquid phases
become identical the effect of pressure can change the composition of
coexisting phases dramatically. A typical pressure —temperature —composition
diagram for Type III phase behaviour is illustrated in Fig. 2B. As in Type
II phase behaviour it can be seen that the three phase line on the
pressure-temperature projection is the result of three separate lines on the
p, T, x diagram representing the composition of liquid 1, liquid 2 and vapor.
There are many sub-types of Type III phase behaviour. Let us consider the
portion of the phase diagram in the region of the upper critical end point and
the critical point of component with the lower critical temperature. There
are four possibilities. The three phase line could be at higher or lower
pressures than the vapor pressure curve of the pure component. Each of these
two cases could have the upper critical end point at a higher (or lower)
temperature than the critical point. These four possibilities are
illustrated in Fig. 3. Consider Fig. 3A, the three phase line is at lower
pressures than the vapor pressure of the pure component (1). At a temperature,
T1, the pressure composition diagram is shown in Fig. 3B. It can be seen that
depending on the pressure and overall composition it is possible to have one
two or three phases present. At high pressures we have a fluid-fluid
equilibrium which if T1 is sufficiently low, it is reasonable to refer to the
equilibrium as liquid-tiquid. Although a line parallel to the composition
axis at pressures between the three phase line and the vapor-pressure of
component (1) cuts the boundary lines in four places, only two phases can be
in equilibrium. The two phases in equilibrium will depend on the overall
composition. At temperature, T2 a different situation exists in that at
pressures above the three phase line it is possible to have two phases present
which on increasing the pressure can pass through a critical point, as is
illustrated in Fig. 3C. Again, although at pressures between that of the
three phase line and the critical point of the mixture at constant pressure
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four phases of different composition can exist,only two phases can exist in
equilibrium. The particular two phases in any instance will depend on the
overall composition. It should be pointed out that for a pressure between
that of the three phase line and the critical point of the mixture at

.,

Fig. 3.The four possibilities for the relative position of the three phase
line and vapor pressure curves of pure components for Type III phase
behaviour. Figures A, D, G and J are pressure—temperature projections of the
four classes. Figures B, E, H and K are the constant temperature, T1 sections
of the p,T,x diagrams; Fig. C, F, I and L are analogous sections at

temperature T2.
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temperature T2 as the composition is increased from pure 1 to pure 2,the
phases in equilibrium change from one fluid to two fluids (gas & liquid), to
one fluid to two fluids (liquid & liquid) and finally back to one fluid. Now
consider Fig. 3D; the pressure composition diagrams at constant temperatures,
T1 and T2 are shown in Figs. 3E and 3F respectively. Figures 3G-3L represent
tIe corresponding diagrams for the systems in which the three phase line is
above the vapor pressure curve of pure component 1.

It is now convenient to consider the effect of pressure on liquid-liquid
immiscibility in a more general phenomenological manner. Consider Fig. 4A, in
this case an increase in pressure causes the liquids to become more miscible.
We now combine this condition together with the four types of known
temperature composition diagrams : —

(a) systems with an upper critical solution temperature (Fig. 4D)
(b) systems with a lower critical solution temperature (Fig. 4H)-,
(c) systems with both and a closed loop on the temperature composition

diagram (Fig. 4L), and
(d) systems with an upper critical solution temperature and a lower critical
solution temperature at higher temperatures (Fig. 4P).

The corresponding pressure, temperature, composition diagrams for these four
classes are shown in Figs.4E, 41, 4M and 4Q. Figure 4B illustrates the
situation where an increase in pressure causes the liquids to become less

Pressure effects on immiscibility phenomena in liquid binary
Figures A,B and C are constant temperature sections of the p,T,x

and Figs. D,H,L and P are constant pressure sections of the p,T,x
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miscible and Figs. 4F, 4J, 4N and 4R represent the p, T, x diagrams
corresponding to the combining of the behaviour illustrate in Fig. 4B with
that of Figs. 4D, 4H, 4L and 4P. Figure 4C illustrates the situation in which
the mutual solubilities of liquids passes through a minimum on increasing the
pressure and Figs. 4G, 4K and 40 illustrate the P' T, x behaviour
corresponding to the combination of the behaviour of Fig. 4C with that of
Figs. 4D, 4H and 4L. Schneider has given examples of phase behaviour for all
the types illustrated in Fig. 4.

THERMODYNAMIC CONDITIONS FOR HIGH-PRESSURE EQUILIBRIA IN

FLUID MIXTURES

The conditions for the coexistence of two phases, denoted and -, in
equilibrium are

(G/x2)(T,p,x1=x1) = (G/ax2)(T,p,x1=x1'') (1)

G(T,p,x1x1') + x1(G/x2)(T,p,x1=x1')
= G(T,p,x1=x1'') + x1(G/x2)(T,p,x1=x1') (2)

TT'' (3)

and p = p' (4)

The conditions for a critical point of a binary are (ref. 11)

(2G/xl2)TP = 0 (5)

(3G/xl3)Tp = 0 (6)

(4G/xl4)TP > 0 (7)

Similarly for a ternary mixture the conditions for a critical point are
(refs. 16,17)

(2G/xl2)TP(Gx22)TP - = 0 (8)

(2G/x22)2TP(3G/xl3)TP - (2G/xlx2)T,P x

+ (2G/xl2)TP(3G/x23)T,P}
+ +

2(2G/xlx2)2TP} = 0 (9)

Equations of statewhich describe the coexistence of phases give several values
of volume for some pressures and temperatures but a unique value of volume at a
given pressure. Therefore, it is more convenient to use T and V as the
independent variables rather than T and p and express the critical conditions
in terms of the Helmholtz function.
For a binary mixture we have

_(2A/V2)T(2A/xl2)T + (2A/Vx1)2 = 0 (10)

-(2A/xl2)2TV(3A/V3)T -

+ 3(2A/xl2)T V( A/Vxl)T( A/Vxl)T -
+ = 0 (11)

The increase in complexity becomes even more apparent when we consider ternary
mixtures. The critical conditions for a ternary mixture become (ref. 16)

- (2A/V2)TDl + (2A/Vxl)TD2 - (3A/Vx2)TD3 = 0 (12)

(W/V)TDl - (W/xl)TVD2 + (W/x2)T,VD3
= 0 (13)

where

= (2A/xl2)TV(2A/x22)TV - (2A/x1x2)2 (14)
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D2
- (15)

D3 (16)

-2A/V2 -2A/Vx1 -2A/Vx2
2 2 2 2and W =
A/x1dV A/x1 A/x1x2 (17)

2A/x2aV 2A/x2x1 2A/x22 T,V

SOLUTION OF THE CRITICALITY CONDITIONS

Several approaches for the calculation of fluid phase equilibria at high
pressures and critical loci have been used (refs. 18-24). A detailed
discussion is outside the scope of the present paper, however, we shall
briefly discuss methods based on equations of state particularly with
reference to the prediction of critical loci.

Approximatesolutions. Several workers have proposed methods for obtaining the
critical properties of a binary mixture by an averaging of the pure component
properties. For example, Kay (ref. 25) proposed the averaging rules

c 2 c 2 c cT x1 T11 + x2 T22 + 2x1x2T12 (18)

v = x12V1 + x22V2 + 2x1x2V1 (19)

where the cross terms V1 and T1 are obtained by a combining rule. Similar
equations have been proposed for the volume and pressure of the mixture. The
usefulness of these equations is limited to mixtures of simple molecules.
They cannot be used to predict liquid-liquid critical phenomenon and they have
no sound theoretical justification. Redlich and Kister (ref. 26) have
proposed an approximate solution based on the critical conditions of a binary
mixture. The most unsatisfactory aspect of this approach is the assumption
that the variation of critical temperature and critical pressure with
composition near the pure component properties can be interpolated over all
compositions. This assumption is only approximately valid when the critical
locus is a simple continuous function (Type I or Type II phase behaviour).
This method does not enable liquid-liquid critical loci to be predicted. An
alternative solution, based on the criticality conditions have been given by
Rowlinson (ref. 27). Rowlinson's solution assumes conformal solutions and an
ideal Gibbs function of mixing. The usefulness of this approach is again
limited to relatively simple systems and it cannot be used for liquid-liquid
critical phenomenon or in any situations where the critical locus is
discontinuous (Type III, IV or V phase behaviour).

Iterativetechniques. Several workers have proposed iterative solutions of
the criticality conditions. Most are based on a Newton-Raphson iteration.
'While these techniques are to be preferred to the approximate solution
techniques. They have only been used to obtain critical properties for the
gas-liquid critical lines in Type I and type II phase behaviour. Iterative
techniques have the advantage over the more general solution techniques that
they require only a fraction of the computer time. These techniques have been
applied both to binary and ternary mixtures (ref. 11 and 28).

General solution techniques. There are several general solution techniques
which have been proposed. Hicks and Young (ref. 19) have proposed a technique
which uses the one-fluid model and is, in principle, applicable to any
equation of state. Details of the computer technique are outside the scope
of this paper. To predict the phase behaviour of a mixture using an equation
of state together with the one fluid model it is necessary to make three major
assumptions. Firstly it is necessary to have a "prescription" or "recipe"
for calculating the properties of the hypothetical fluid (the equivalent
substance) which has the same configurational property as the mixture. The
prescription is a function of composition, energy and volume parameters
characterizing interactions between like and unlike molecules. The most
widely used prescription is that referred to as the van der Waals model (ref.
11)

2 2a5 = x1 a11 + x2 a22 + 2x1x2a12 (20)

b =
x12b11 + x22b22 +

2x1x2b12 (21).
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Several other prescriptions have been proposed (ref. 11). Secondly it is
necessary to have some form of combining rule which enables the unlike energy
and volume parameters to be calculated from the energy and volume parameters
characterizing interactions between like molecules. Numerous combining rules
have been proposed and have been written in terms of the
equation of state constants a, and b, energy and volume reducing parameters f
and h or in terms of critical properties (ref. 11). The most widely used
combining rule, in terms of a and b are

0.5
a12 = b12(a11a22) (22)

b12 = 0.l25(b113 + b223)3 (23)

which in the case of the van der Waals, Guggenheim (ref. 29) or Carnahan and
Starling (ref. 30) equation of states are identical to

V :O.l2S(Vll/3 + V2 1/3)3

Equations (22 and 23) and (24 and 25) are not equivalent to each other in the
case of all equations of state. Thirdly, of course, an equation of state is
necessary for prediction using this approach. There have been numerous
equations of state used for the prediction of phase behaviour at high
pressures. Two general comments are in order here before discussing
individual equations of state in more detail. First, the van der Waals
equation of state is inaccurate but is capable of qualitatively predicting
phase behaviour. Second, most hard sphere and attractive term equations of
state tend to give ery similar results for critical loci if the attractive
term is of the -a/v and is temperature independent.
Equations of State. The Helmholtz function can be calculated from an equation
of state by using the standard thermodynamic relationship

= (A/V)T,x (26).

Perhaps the most commonly used equation of state apart from the van der Waals
equation is that proposed by Redlich and Kwong which has a temperature
dependent attractive term

p = RT/(V-b) - a/T°5(V+b)V (27).

The Redlich-Kwong equation (ref. 31) has been widely used by chemical
engineers and has also been used to predict phase behaviour of mixtures (ref
32). While it can be argued that polar molecule mixtures will have
temperature dependent attractive forces the justification for the use of this
equation is that it gives, in general, better agreement with experiment than
does van der Waals equation (as judged by comparison with the vapour pressure
data of pure substances). There have been several attempts to modify the
Redlich-Kwong equation. Two equations of this type which are worthy of note
are those of Soave (ref. 32) and Gibbons and Laughton (ref. 33). Both have
additional parameters and predict the pure component data better than the
Redlich-Kwong equation. Their usefulness for mixture properties have not
been adequately tested although they show some promise. The Soave equation
is:

P = RT/(V-b) - a(T)/V(V+b) (28)

where a(T) =0.4274(R2T2/p)(l +m(l_(T/Tc)05))2 (29)

m = 0.480 + 1.574 - 0.l76c2 (30)

b = O.OO8664RT/P (31)

and ü is the acentric factor defined by

() —log(p /p ) - 1.00 (32).

The equation proposed by Gibbons and Laughton is similar to that of Soave but
uses experimental vapor pressure data to calculate the temperature dependence
of the a term.
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p = RT/(V-b) - ac(T)/V(V+b) (33)

where c = 1 + X(T/T) + Y((T/T)°51) (34)

and X and Y are obtained by fitting the equation to vapor pressure data over a
wide range of temperature. The Soave and Gibbons and Laughton equations are
formally identical if

X = m Y = -2m(m+l) (35)

Since these equations contain more adjustable parameters their extension to
mixtures is less straightforward and more uncertain than for equations with a
more fundamental basis. These equations have the advantage that they predict
a more realistic compressibility factor than the van der Waals equation.
Although these equations have been used to predict phase behaviour of mixtures
their long term usefulness is limited by their lack of a fundamental basis.
Peng and Robinson (ref. 34) have proposed an equation of state

p = RT/(V-b) - a(T)/{V(V+b) + b(V-b)} (36).

It gives a value of the compressibility factor, Zc = PcV /RTC of 0.307. these
workers have used this equation to predict the gas-liqui critical properties
of binary and multicomponent mixtures with good accuracy. However, their
analysis was somewhat limited to relatively simple hydrocarbon mixtures.
Furthermore the form of the equation makes manipulation to obtain all the
necessary derivatives for the prediction of critical properties for mixtures
difficult.

A number of equations of state are based on modifications to the molecular
size term by replacement of (V-b) by a term derived from an approximation for
a hard sphere equation of state. The most widely used equation of this type
is that due to Guggenheim (ref. 29):

P = RT/(l-y)4 + a/V2 (37)

where y = b/4V (38).

This equation is relatively easy to manipulate to obtain all the necessary
derivatives for the prediction of critical properties for mixtures.
Guggenheim's equation has been used to predict the phase behaviour at elevated
pressures of a wide range of binary and some ternary mixtures (ref. 11 and
28). Most of the comparison between theory and experiment have concentrated
on the critical temperatures of mixtures. The equation cannot be expected to
give good results (a) at low pressures (the equation does not predict second
virial coefficients of pure gases correctly) nor (b) for volumetric
properties. The critical compressibility given by this equation is 0.36
instead of approximately 0.29 for the inert gases.

Several other hard sphere and attractive force term equations of state have
been proposed. The hard sphere term 4y) for several equations is as below:

(y) = l/(l-4y) van der Waals

=l+4y+l6y2+64y3+256y4+l024y5+4096y6+ (39)

(y) = l/(l-y)4 Guggenheim

= 1 + 4y + by2 + 20y3 + 35y4 + 56y5 + 84y6 + (40)

(y) = (l+2y)/(l—2y) Scott V (ref. 12)

= 1 + 4y+ 8y2 + l6y3 + 32y4 + 64y5 + l28y6 + (41)

(y) = (l+3y+4y2)/(l-2y)(l+y) Scott VI (ref. 12)

= 1 + 4y + bOy2 + l8y3 + 38y4 + 74y5 +l50y6 + (41)

(y) = (1 + y + y2)(l-y)3 Frisch et al. (ref. 34)

= 1 + 4y + bOy2 + 19y3 + 31y4 + 46y5 + 64y6 + (42)
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4(y) = (1 + 2y +3y2)(1—y)2 Thiele (ref. 35)

= 1 + 4y + 10y2 + 16y3 + 22y4 + 28y5 + 34y6 + (43)

The usefulness of these approximations to the true hard sphere equation of
state can be gauged by comparing the expansions of these equations with the
exact virial expansion for a hard-sphere gas (ref. 12) which up to the seventh
virial coefficient is:

4(y) = 1 + 4y + by2 + 18.3y3 + 28.24y4 +39.53y5 +43.52y6 + (44)

There have been several equations of state which have been suggested which use
a temperature dependent attractive term together with a hard sphere term.
Such equations may be expected to lead to better agreement between theory and
experiment for mixtures containing a polar component. McElroy (ref. 36) has
proposed an equation which combined the Guggenheim hard sphere term with the
Redlich Kwong attractive term.

There have been several attempts to extend the "hard-sphere" term of the
equation of state to allow for non-spherical molecules. While such
approaches offer a sound extension of theory to non-spherical molecules
without resorting to arbitrary parameters often the final hard body term
becomes considerably more complex. Such complexity can be serious in the
application to mixtures in the critical region.

Kohlen, Kohler and Svejda (ref. 37) have proposed a generalized van der
Waals equation of state which may be written

p = Z (RT/V) + Z (RT/V) - a/V2 (45)h corr

or pV/RT = Zh
-

a0y/(V*RT) + Zcorr (46)

where Zh is the compressibility factor for an assembly of hard particles
Z is the correction term for the non-linear density dependence of
tR'ttractive term at medium and low densities.

a0/V2 is the uncorrected attractive term *
and y is the "reduced" density and equal to V /V

*
where V is the volume of one mole of hard particles.
It is convenient to take as given by the Boublik Nezbeda equation (ref. 38)

Zh = [1 + (3a-2)y + (3a2 - 3cz + l)y2 - f(a)y3]/(l-y)3 (47)

where a is the arameter for anisotropic molecular shape
and f (a) = a (for hard fused spheres)
or f(cL) = a(6a - 5).
If a = 1 eqn.(47) reduces to the eqn.(42) which is a form of the equation for
hard spheres proposed by Frisch et al. (ref. 35).

A slightly different approach has been used by Deiters (ref. 39) who developed
a semi-empirical equation of state for non-polar and weakly polar fluids and
fluid mixtures from the square well model of the intermolecular pair
potential. The equation of state has three adjustable parameters and
contains "corrections" for non-spherical molecular shape, "soft" repulsive
potential and three-body effects. Deiters equation may be written

p = (RT/b)PZh(p)
- (Ra/b)p2(T/y)(exp(y/!)-l)I(p) (48)

where b is the covolume (i.e. the volume of 1 mole of particles in the cubic
close packed arrangement) and can be calculated from the molecular
diameter
P is the reduced density equal to b/Vm where V is the molar volume
a is the characteristic temperature equal to cPk where cis the depth of
he potential well and k is Boltzmanns constant.
T is the reduced temperature equal to T/a = kT/c

and 1(P) is a function related to the square well potential.

Both the equations of Kohlen et al. and Deiters have been used to
predictcritica1loci of a limited range of mixtures.
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Criteria for Using a Particular Equation of State. There is often considerable
confusion over what is and what is not an acceptable equation of state. In
general when using equations of state for mixture properties it is necessary
to introduce mixture prescriptions (or models) and combining rules. There is
necessarily some additional uncertainty introduced by these prescriptions and
combining rules. Unfortunately the uncertainty introduced for some of the
more complicated equations of state are considerable and the uncertainty may
override the advantage gained by the use of a more accurate equation of state.
Finally, perhaps it is necessary to have in mind that when applied to phase
behaviour of mixtures at high temperatures and pressure it is necessary to
obtain various differentials of the Helmholtz function. Some of the more
complicated equations of state lead to a great increase in complexity with
little or no improvement in agreement between theory and experiment. Several
of the more complicated equations, which are superior in predicting the
properties of pure substances and appear to have promise when applied to phase
behaviour of mixtures at elevated pressures and temperatures have not been
extensively tested.

CONCLUDING REMARKS

In 1983 Schneider (ref. 2) listed several applications in which he claimed
"fluid mixtures, especially in the critical and supercritical region, are
becoming increasing important'. Since that time there have been both
theoretical and experimental developments in the subject. A discussion of
the experimental study of liquid-liquid equilibrium has been omitted from this
paper. Perhaps the most pressing requirement in this area is for more
accurate data. The pioneering work of Francis (ref. 40) has added much to
our knowledge of liquid-liquid equilibrium in binary and ternary mixture at or
near atmospheric pressure. Several groups have more recently added to our
knowledge of the effect of pressure on liquid-liquid equilibrium. However,
there are still very significant discrepancies between the data of various
workers for liquid-liquid equilibrium both near and above atmospheric pressure
for many systems. The work of the liquid-liquid group of the IUPAC
Commission V8 has revealed the seriousness of these discrepancies even for
systems such as hydrocarbon + water mixtures.

The state of our theoretical development can be summarized by saying we can
now predict the critical loci of simple binary systems, such as mixtures of
inert gases or mixtures of similar size hydrocarbons with good accuracy
(within a few kelvin and a few tenths of a rnegapascal) using one adjustable
parameter. Theoretical description of binary mixtures showing Type III or
Type IV behaviour is semi-quantitative at present. However it can be
expected that development of equations of state which allow for shape factors
and additional non-dispersion forces will lead to a more accurate description
of the critical loci and liquid-liquid equilibrium at elevated pressures.
This will also require development work on combining rules and equivalent
substance prescriptions with a more fundamental basis. The extension of the
one fluid model to critical loci of ternary and multicomponent mixtures is in
its infancy. At present, even the general phase behaviour type for ternary
mixtures (analogous to the six binary types) are not known. As the phase
behaviour of ternary mixtures is likely to be much more difficult to study
experimentally it would be especially useful to be able to predict the
behaviour even if only in a semi-quantitative manner.
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