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Abstract The ultra—violet microscope, operating in the wavelength
range 230 to LLOOnm, can be used to visualise the distribution of
absorbing or fluorescent centres in a polymer. The absorbing
molecules may be added small molecules, whose distribution or
migration is of interest, or reagents which can react with centres
in the polymer to give bound absorbers. Applications of the
microscope are illustrated by studies of the localization of
oxidative degradation in pol'proplene and by studies of the
diffusion of low molecular weight additives and of atactic
fractions in polypropylene.

INTRODUCTION

The optical microscope has become almost a symbol of science but it has
made far more impact in biology and medicine than in polymer science. When
a sample is introduced into a microscope, image contrast arises because
different regions of the sample affect the illumination to differing
extents. The image may result from many effects, including diffraction,
refraction, reflection, scattering, interference, polarization,
fluorescence and absorption, and microscopes have been designed to take
advantage of most of these phenomena, polarized light microscopy being the
most common application to polymers. The great power of the microscope in
biology arises from the development of reagents ("stains") which are
capable of dissolving in, or binding to, regions of interest in the sample
and enhancing their absorption or fluorescence. It has been our belief
that the potential for a similar approach to the study of polymers is
considerable, in that absorbers or fluorescers can be selectively bound to
specific chemical entities in the polymer or will preferentially interact
with, or dissolve in parts of the structure. In this way these molecules
can be used as stains and probes of the morphology or chemical reactions of
the polymer on the scale from 0.25pm upwards, in a manner very similar to
that in which the biologist uses his stains to develop contrast in tissue
specimens. Further, in so far as the added molecules resemble other small
molecules of interest, such as drugs and pesticides, they can be used to
study the transport of such molecules in polymers,

In principle, absorption microscopy could be done with coloured substances
using a normal visible light microscope. However, in all forms of light
microscopy the depth of focus is limited, particularly as the magnification
is increased. The result is that very thin samples are required for
successful microscopy and only absorbing species with high extinction
coefficients will yield acceptable contrast. We have found that there are
great advantages in moving to shorter wavelengths and we have been involved
for some years in the development of optical microscopy in which the
illuminating light is in the blue/ultra-violet range, from around 230 to
400nm. In this range the main intentional sources of image contrast are uv
absorption and fluorescence emission, although other mechanisms, notably
diffraction, may cause problems. The main advantages of uv are the greater
range of absorbing compounds with a high extinction coefficient and the
number of uv absorbing substances which are of interest in their own right.
A further advantage of the uv microscope is that it can be used for
fluorescence, although the reverse is not true. Observation of fluorescing
substances can offer greater sensitivity as the fluorescence is observed
against a dark background but the range of suitable compounds is more
limited.
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we liav app11d out rnic]oBaope to a wic1 tane of ptb1em 1n1ud1n
studies of polymer crystallization and morphology, of polymer-polymer
mixing and of the curing inhomogeneities in thermosetting resins. These
and other applications have all been reviewed (refs. 1,2). In this paper
we illustrate the power of the techniques by reference to two applications,
the study of the location of oxidation in polyolefins and the study of the
diffusion of stabilizer molecules in polymers.

EXPERIMENTAL

The uv microscope which we use has been described in detail elsewhwere
(ref. 1). Basically it is a conventional optical microscope, modified by
fitting quartz optics, a 150W Xenon arc source, with appropriate filters
and a TV camera system to allow viewing of the image. Quantitative
microdensitometry is performed with a waveform monitor, though we are now
developing digital methods using a computer image analyser. Samples are
sectioned on a base sledge microtome with a glass knife and mounted in
glycerol on quartz or glass slides. For quantitative work it is essential
that the spectrum of the illuminating light lies inside the absorption
envelope of the sample and preferably as close as possible to the
absorption maximum, for maximum contrast. Most of the work described in
this paper used wavelengths around 350nm and the light was filtered with
the combination of a UG1 UV filter with a BG38 red suppression filter. At
these wavelengths glass slides are adequate although shorter wavelengths
require much more expensive quartz slides.

Staining of samples and specific features of sample preparation are
described in the appropriate sections below.

OXIDATIVE DEGRADATION OF POLYOLEFINS

Introduction
Polyolefins, particularly those with tertiary hydrogen atoms, are very
vulnerable to oxidative degradation by the familiar peroxidation chain
reaction (ref. 3), accelerated by the influence of sunlight or modestly
elevated temperatures, and resulting in the material becoming discoloured
and embrittled.

The main technical problem with oxidative degradation in polyolefins is
that mechanical breakdown occurs at very low levels of chemical reaction.
Absorption of less than one oxygen molecule per 100 carbon atoms, leading
to a reduction in molecular weight by a factor of about 2 can often lead to
complete loss of toughness in a PP sample. Although this is undoubtedly
due to the fact that PP is a semi-crystalline polymer whose oxidation is
confined to the amorphous phase, the detailed reasons for embrittlement are
not clear. Carlsson and Wiles (ref. 4) have suggested that photo-oxidation
of PP film takes place on the surface, leading to extensive
recrystallization and the production of surface cracks which can propagate
through thin film and fibre samples. Oswald and Turi (ref. 5) proposed
that embrittlement occurs because of preferential scission of
'tie-molecules', linking crystallites in the polymer and carrying a
disproportionate amount of the applied stress.

Although it is reasonable to assume that oxidation is random in the molten
liquid polymer it is by no means certain that this is still true of the
amorphous part of the solid. Aggregation of polar impurity groups in the
hydrocarbon polymer or their rejection by the crystallization process might
be expected to lead to local concentrations of the initiating centres and
thus to local variations in oxidation rate. A number of observations
suggest that degradation is indeed not wholly uniform but that some species
or some parts of the sample are preferentially attacked. Thus
discolouration is often seen as an expanding yellow spot on a sample,
suggesting that oxidation products themselves locally enhance oxidation.
Fracture of embrittled PP samples often appears to follow the spherulite
boundaries or spherulite radii rather than an arbitrary path (ref s. 6,7);
also embrittled polymers may be melted and remoulded with the regain of
most of their toughness (refs. 5,8). This implies that spherulite
boundaries and interfibrillar regions may be particularly vulnerable to
oxidation.
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A proper study of these problems requires a technique which can reveal not
the overall effect of oxidation but its distribution within a sample of
polymer and we have attempted to reveal the distribution of oxidation in
polypropylene (PP) by using ultra-violet microscopy. In order to render
the oxidised regions visible we have treated sections of PP by reaction of
the oxidised polymer with reagents which will form highly uv absorbing
products bound to the oxidised regions.

Oxidation of isotactic and atactic PP
The isotactic PP used for most of this work was an additive—free grade
produced by a diluent process which removes most of the undesirable atactic
polymer into the hydrocarbon polymerisation medium. The Ziegler catalyst
is removed by an alcohol wash with typical remaining levels of Ti, Al and
Cl being 30, 15 and 45ppm respectively. As we received the polymer it
contained 2.5% of residual atactic material extractable in boiling
n—heptane.

In Fig. 1, we show the oxygen absorption curve for the polymer and for the
atactic material extracted from the bulk polymer by n-heptane ref lux. The
atactic fraction has about half the induction period of the whole polymer
and oxidises at about 3 times the rate. The bulk polymer becomes
noticeably embrittled after oxidation for times greater than one induction
time.
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Fig.l Oxygen uptake at 1200C of 100 pm films of a)
PP and b) its atactic fraction.

In a separate study (ref. 9) we have used reaction with
2,L-dinitrophenylhydrazine (DNPH) to monitor the carbonyl formation in the
bulk polymer and in the heptane-soluble fraction as a function of oxidation
time. We find that the amount of heptane—soluble material increases from
2.5% initially to 2.9% after 2h and 12.8% after Lh at 1200C; it then
increases rapidly and becomes crystalline. At the beginning of the
reaction the heptane—soluble fraction (2.5%) has a carbonyl content
equivalent to 7.25 pmol DNPH g, with a corresponding value of 1.2 for the
insoluble fraction. After 2h the corresponding figures are 75.5 and 13.2
and at the end of the induction time (lLh) they have risen to 185 and 71L
pmol DNPH g. Thus after 2h oxidation the concentration of carbonyl
groups in the atactic fraction is 5.7 times higher than that in the
isotactic polymer, even though the former represents only 2.9% of the total
weight. DSC analysis shows that the heptane-soluble fraction remains
essentially amorphous up to about 3h oxidation though its crystallinity
rises rapidly thereafter.

From these observations we conclude that the 2—5% heptane—soluble fraction
of PP oxidises 2-LL times faster than the isotactic material, both in
isolation and when present in the isotactic polymer. This is in agreement
with the similar conclusion of Frank et al (ref 10). Apparently this
effect stems from the higher levels of unsaturation of the atactic polymer
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as Osawa et al (ref. 11) found that, on hydrogenation, atactia PP becomes
as stable as the isotactic polymer. In the later stages of oxidation the
extractable fraction increases as more low molecular weight chains are
formed. When PP crystallizes from the melt, both atactic polymer and low
molecular weight impurities are expected to be excluded from the crystals
of the growing spherulite and to concentrate in the liquid ahead of the
growth front. This segregation will tend to give weak zones at spherulite
boundaries and weak radial lines between the fibrils. With increasing
oxidation, during processing and prior to crystallization, the amount of
rejectable material would be expected to rise and the boundary strength
would be expected to decrease. With these ideas in mind we set out to
answer two questions, 1) Does atactic material reject during
crystallization of PP and 2) Does this contribute to preferential oxidation
at spherulite boundaries?

Atactic polypropylene is not visible by uv microscopy so that, to answer
the first question, it must be rendered visible by staining. To do this we
have attached fluorescent groups to the polymer. The group which we use is
the dimethylaminonaphthylsulphonyl (dansyl) group, which can be covalently
bound to the polymer at high temperatures via the sulphonyl azide (ref.
12). The concentration of the staining group must be kept as low as
possible to minimise alterations in the properties of the polymer — we
typically use 1% by weight.

The use of the sulphonyl azide provides a very convenient and efficient
method of binding a range of fluorescent or absorbing groups to hydrocarbon
polymers and has many potential applications in the study of mixing
phenomena in polymer systems, including polymer blends. Using samples of
PP containing atactic polymer which has been labelled in this way we have
been able clearly to reveal the concentration of the atactic fraction
during the crystallization (ref.1). This experiment can also be reversed
and fluorescence microscopy of samples of fluorescently labelled isotactic
PP containing unlabelled atactic polymer also clearly shows the rejection
process (ref. 13). Thus, the uv microscope, in combination with
appropriate stains, reveals that atactic fractions can indeed be rejected
from spherulites during crystal growth. In order to use the microscope to
examine whether this redistribution has any significance for oxidation we
require a method of staining the oxidised polymer to reveal the
distribution of oxidation.

Staining reagents for oxidation
When partly degraded, PP contains a variety of carbonyl compounds, such as
carboxylic acids, ketones and aldehydes, which absorb uv below 300nm.
However, the absorption is too weak to be observed directly with our Xenon
source, so that staining methods are needed to enhance the visibility of
oxidation in a polymer which is only slightly oxidised. Our first approach
has been to use reagents which will react with carbonyl groups in a
polymer. Two such reagents have been used, DNPH, which has been used
previously as a reagent for carbonyl groups in oxidising polyolef iris
(ref.14), and dansyl hydrazine
(1-dimethylaminonaphthalene-5-sulphonylhydrazine, (DNSH)) which behaves
similarly but is fluorescent and so inherently more sensitive. Although
DNSH seemed initially promising, more careful study shows that it has
little solubility or permeability in the polymer so that only the surface
is stained. DNPH is more satisfactory and oxidation can readily be seen at
levels corresponding to about one quarter of the induction time in
unstabilised PP.

An alternative staining procedure is to use the reaction of sulphur dioxide
with hydroperoxides. The initial product of this reaction is the polymer
alkyl sulphate (ref. 15) and in polyethylene these groups are fairly
stable. In PP the hydroperoxides, and thus the alkyl sulphates, are
formed in sequences of 2—4 groups so that on heating these groups eliminate
sulphuric acid to give short sequences of double bonds. Exposure of
oxidised PP to sulphur dioxide, followed by heating at 80°C under vacuum
produces strong uv absorption at 280nm. This procedure has the advantage
of being totally non extractive but it requires quartz slides and cover
slips; we find that the absorption maximum at reasonable levels of
oxidation is still too weak for adequate image contrast. For this reason
all of the work described below was carried out using DNPH as the staining
reagent.
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Conclusions

Zn tflla Beticn we tsave i11uatzatd lw tic uv m1Qtoa4ape can be used with a
reactive staining system to reveal the location of oxidation In a PP sample.
The system has not proved sufficiently sensitive to allow us to detect
significant effects of uneven distribution of the traces of carbonyl and
hydroperoxide impurities in the polymer but it reveals how the oxidation is
invariably very non—uniform and how this non—uniformity can be associated with
catalyst residues in the polymer. More details of this aspect of the work and
of studies of gas-phase polymers will be published elsewhere (ref. 18).

DIFFUSION RATE MEASUREMENTS

An understanding of the diffusion of small molecules in polymers is of
great importance bpth for their application as packaging and barrier
materials and for controlling the migration and loss of stabilizing
additives. Measurement of diffusion coefficients requires the
determination of the concentration profile for the diffusant as a function
of time. This has conventionally been done either by the use of multi-film
stacks or by diffusing the additive Into a rod of material, followed by
sectioning and analysis of the sections. Both methods are time—consuming
since diffusion distances of the order of mm are used. Additionally
analysis has usually been by use of radiolabelled additives with all of the
expense and problems of synthesis which they Imply. We have found that
the diffusion of uv absorbing compounds in solid polymers can easily be
monitored by following the progress of the additive Into a sample of
polymer in the uv microscope. The polymer may be in the form of a small
rod Immersed In a solution of the additive in a solvent which does not
swell the polymer; for PP suitable solvents are water and glycerol. The
rod is sectioned longitudinally when the additive has penetrated about
lOOum and the concentration profile of the diffusant within the polymer Is
measured by uv microscopy of single sections. An alternative method is to
use film samples, either immersed in a solution of the additive or clamped
between layers of finely powdered solid additive. At the end of the
required time the film is sectioned so that the concentration profile
through Its cross—section can be measured on a single section. If powdered
additive, or a saturated solution, Is used, the solubility of the additive
in the polymer can also be estimated, although the difficulty of measuring
section thicknesses limits the accuracy which can be achieved.

The concentration profiles are usually measured from photographs of the
waveform monitor trace. Once the profile is established the diffusion
coefficient of the additive may be determined by fitting the profile to the
expected form (ref. 19):

C/C = 1-erf(x/2D't)

Where C is the measured concentration, C0that at the surface of the
polymer, x the distance from the polymer surface, t the time and D the
diffusion coefficient.
Figure 6 shows data determined in this way for a strongly uv absorbing
molecule diffusing into PP at 60°C for varying times. The data are all
fitted with a single diffusion coefficient of 1.03x101 cm2s and agreement
with experiment is good.

This method can only be used with molecules having strong uv absorption or
fluorescence but this is not a severe limitation for polymer stabilizers.
Its main advantage is that the concentration profile is measured over a
distance of only about 100-2001.im so that the method is much quicker and can
be used over a wider range of temperatures than the more conventional
macrocopic methods.

Although we have mainly used uv absorbers, the same methods can be applied
to fluorescent molecules. As an example, we have used fluorescence
microscopy to monitor the diffusion into PP of an atactic fraction of
molecular weight about 8000, rendered visible by covalently bound
fluorescent groups as described earlier. Figure 7 shows data for diffusion
at 130°C for two different times, fitted by diffusion coefficients of
around 2x10 cm2 s.
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Fig. 6 Diffusion of 2—hydroxy—

4—dodecylxy benzophenone into
PP at 60 C. Points are experi-
mental for diffusion times of
a) 22h. b) 30h. and c) 46h.
Solid lines are calculated for
D = 1.03x109 cm2

Fig. 7 Experimental points and
fitted line for diffusion of
atactic PP into0the isotactic
polymer at 130 C.
Curve a: time 8h.

D = 2.98x109 cm2
Curve 2: time = 18h.

D = 1.83x109 cm2

An alternative approach to measuring diffusion coefficients is to begin
with a polymer film which contains the dissolved additive, uniformly
distributed through it. If the film is placed in contact with a liquid
which is a good solvent for the additive and non-swelling for the polymer
then loss of the additive from the surface is controlled by the rate of
diffusion of the solute to the surface. To a good approximation, the
concentration profile in this situation Is given by:

2 2

=
[exP(_A)cos

- (exp(-9A))cos

where A = Dr t/41 . Computer fitting of this equation to the measured
profile from one edge to the centre of the film then allows the diffusion
coefficient to be evaluated. Figure 8 shows such an analysis for one of
the benzophenones at 1100C.

We have studied the homologous series of L—alkoxy—2—hydroxybenzophenones
with 1,8 and 12 carbon atoms in the alkyl group, measuring diffusion
coefficients by diffusion-out and diffusion-in experiments. Table 1 shows
the results for the three compounds at two temperatures. For the long
alkyl chains the diffusion coefficients measured by the two methods are in
very good agreement. For the methyl side chain the agreement is rather
less good, the diffusion coefficient for migration into the polymer being
about half of that for diffusion out. It is not entirely clear why this
should be so. The diffusion—out experiments were performed using methanol

0
Li

Li

150
XIpm

Fig. 8 Experimental points and
fitted curve for diffusion of

2—hydroxy—4—methoxybenzophenone
out of PP at 40 C. Time 192h.
D = 1.26x1010 cm2

X/pm
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TABLE 1. Diffusion coefficients (xiO cm2st for benzophenones in

No
C

. of
atoms

Diffusi

40 °C

on-out

50

Diffusi

40 'C

on-in

50 °C

1 13 125 8.23 62.1

8 6.43 42.4 4.48 38.8

12 5.8 31.9 4.47 28.8

as the solvent, whereas the diffusion—in experiments were carried out using
the solid additive. It is possible that the discrepancy reflects the
effect of slight penetration of the polymer by methanol. This would be
expected to have the greatest effect on the short-chain additive since this
has the lowest solubility in the polymer and the highest in the solvent.

CONCLUSIONS

In this brief review we have attempted to illustrate the main ways in which
the uv and fluorescence microscope can be applied to problems in polymer
science, illustrating the applications by reference to our particular
interest in degradation and stabilization of polymers. The approaches
which we have used include the monitoring of migration and extraction of
small molecules, the use of stains which will react with functional groups
to reveal their location and the use of covalently bound labels for
polymer-polymer mixing studies. None of these applications is specific to
polymer degradation studies and all could equally well be applied in other
areas of polymer science. We hope that this paper will help to stimulate a
more general interest. Although uv microscopes are rare and expensive
devices, there is a fluorescence microscope in almost every biology
laboratory.
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