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Abstract — In the past decade REPE [B. A. Hess, Jr., and L. J. Schaad,
J. Am. Chem. Soc., 93, 305 (1971)], Herndon's valence bond method
[J. Am. Chem. Soc., 95, 2404 (1973)], the graph theoretical method of
Trinajsti, Gutman and colleagues [MATCH, 1, 171 (1975)] and of Aihara
[J. Am. Chem. Soc., 98, 2750 (1976)] and the conjugated circuits method
by Randi [Chem. Phys. Lett., 38, 68 (1976)] have been developed for the
prediction of aromatic character. These new methods are all quite
simple to use; and, although minor differences can be found, for neutral
conjugated molecules they tend to agree and to give results which are
remarkably good compared to those of earlier techniques. The structures
of the four methods are compared, and they are shown to be similar.

INTRODUCTION

Theoretical methods developed in the last ten years for the prediction of aromatic character

are definitely more successful than those used earlier. This statement can be made without

agreement on a quantitative experimental definition of aromaticity. It is enough to agree

to the qualitative statement that aromatic compounds are especially stable and react by

electrophilic substitution rather than addition. The reason that this is sufficient is that

predictions from earlier theoretical treatments, in particular the Htickel delocalization

energy, fail so badly that they disagree with even the most qualitative notions of

aromaticity.

In the present paper we shall describe and compare four of the newer theoretical methods:

1. REPE of Hess and Schaad (Refs. 1—3)

2. The Valence Bond Method of Herndon (Ref s. 4,5)

3. The Topological Resonance Energy of Trinajsti6 and coworkers (Ref s. 6,7) and

Aihara (Ref. 8).

4. Randi's method of conjugated circuits (Refs. 9,10).

The comparisons we wish to make are not so much in terms of the quality of predictions.

There are differences, but on the whole the four give similar predictions for neutral

conjugated molecules. To make a finer comparison would require a quantitative definition of

aromaticity. This could be given, but here we want rather to compare the formal structure

of the methods themselves.

Most theoretical indices of aromaticity are computed as differences between the actual

molecular energy and the energy of some reference structure. This is not universally true;

Julg (Ref s. 11,12) and Kruszewski and Krygowski (Ref s. 13,14) follow a suggestion of Albert

(Ref. 15) and express aromaticity in terms of bond length equalization; but the four methods

to be compared here can all be formulated as the difference between actual and reference

energies. It will be crucial to keep the reference structure explicitly in mind. Much
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confusion in the literature can be traced to a failure to do this.

Another point of confusion has arisen because often resonance or delocalization energies

have not been normalized to take into account the varying size of the conjugated system. In

comparing, for example, thermodynamic heats of formation of benzene and acetylene one of

course compares theHf of 1 mole of benzene with that of 3 moles (not 1 mole) of acetylene.

A similar normalization should be made in comparing resonance energies. If total resonance

energies are compared for conjugated molecules with a wide range of size, the dominating

effect is likely to be simply that large molecules have more resonance energy than small.

To illustrate this, Fig. 1 shows total resonance energy computed as in Ref. 1 compared with

RE
(/3)

Fig. 1. A comparison of total resonance energy computed using the usual
ethylene reference (DE) and with the reference of Ref. (1) (RE).

the usual HUckel delocalization energy (Ref. 16) for the 40 benzenoid compounds of Ref. 17.

There appears to be fair agreement between the two methods, but this is entirely spurious.

Benzene lies in the lower left of the figure and the points correspond to molecules of

increasing size up to 32 carbon atoms in the upper right. If instead the two resonance

energies are compared per pi electron (or per carbon atom) as in Fig. 2, no correlation is

seen between the two methods. The best normalization is not yet certain. We at first

divided by the number of pi electrons (Ref. 1), but now by the number of carbon atoms

(Ref. 3). The two are equivalent for neutral ground—state hydrocarbon molecules, but differ

somewhat for ions and some hetero—systems. Division by the number of bonds has also been

used (Ref. 18), though Trinajsti (Ref. 19) finds no significant difference between this and

the division by number of pi electrons. In this paper we shall primarily use division by

number of p1 electrons.

2 4 6 8 10 12 14

DE (3)
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Fig. 2. The data of Fig. 1 normalized by dividing by the number of pi
electrons.

THE FOUR THEORETICAL METHODS

REPE. In the HUckel calculation the pi energy of all acyclic conjugated hydrocarbons can be

approximated accurately as the sum of bond energy terms (Ref. 1)

8

E,(acyclic) = n.E. (1)
i= 1

where n is the number of bonds of type i with energy E contained in the molecule. The 8

bond types used are listed with their energies in Table 1 of Ref. 1 where they are specified

by a double subscript, the first of which is 1 or 2 for single or double bonds and the

second gives the number of attached hydrogen atoms.

The same bond types occur in cyclic conjugated hydrocarbons, but in these compounds the

HUckel pi energy is not accurately given as the sum of bond energy terms. The difference is

defined as the resonance energy

RE = E — E.n.E. . (2)

For example in benzene there are 3 single bonds each with 2 attached hydrogen atoms and 3

double bonds each with 2 hydrogens

RE = E,,Xbenzene)
—

(3E12 + 3E22)
= 8.00$ — 7.61$ = 0.39$ . (3)
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Dividing by the number of pi electrons gives

REPE(benzene) = +0.065 $ . (4)

The difference (in units of ) between E7 and the sum of bond energies may be positive

(= aromatic), zero (= nonaromatic) or negative (= antiaromatic).

Valence Bond Method. Consider the two Kekul structures of benzene.

and (3

Suppose the corresponding wavefunctions are i, and If these two are assumed to be

orthonormal, the energy of benzene, a linear combination of ! and 2, is

E(benzene) = E[(4'1 + 2)k/21

=
+[E(4h1) + E(*2)} + 4fq1H*2dT. (5)

The two Kekulé structures are of equal energy so that

--[E(*1) + E(*2)] = E(4c1). (6)

The last term in Eq. (5) is the difference between the benzene energy and the energy of a

single Kekulé structure. This is defined as the resonance energy in the valence bond

method.

RE = f*1H1kdT (7)

The integral in Eq. (7) is given the symbol H12 and is assigned the numerical value =

0.841 eV (Ref. 5). For a molecule with N Kekulé structures a similar analysis gives

RE = ZH... (8)

Thus naphthalene has the 3 Kekulé structures

JL
3 4 5

and

RE =
4[H34 + H35 + H45]. (9)
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Herndon (Ref s. 4,5) then reasoned as follows to obtain his successful and easily applied

method. Naphthalene structures 3 and 4 differ in the 6—membered ring on the right;

structures 5 and 3 differ in the left ring. This difference is like that between benzene

structures 1 and 2. Therefore assume

1134 = 1135
= 7. (10)

The difference between 4 and 5 extends over both rings and is taken to be the same as the

difference between the two Kekul structures of [10}—annulene. The corresponding resonance

integral is given the value H45 = = 0.336 eV so th't for naphthalene

RE = --(2 X 0.841 + 0.336) = 1.345 eV . (11)

Herndon and Ellzey (Ref. 5) also list = —0.650 eV for the resonance integral between the

two Kekulé structures of cyclobutadiene and = —0.260 eV for that of [8]—annulene.

Resonance integrals for larger rings are neglected, though they could be included in the

method.

A pair of Kekulé structure may differ in more than one ring. The two structures of

phenanthrene

and

differ in both terminal rings. Resonance integrals between such structures are neglected in

the Herndon method.

pological Resonance Energy. The Hiickel pi energy of a conjugated molecule is a sum of

orbital energies which are the roots of the secular polynomial which in turn may be obtained

by expanding the secular determinant. For example, benzene has nondegenerate orbital

energies ±2 and degenerate orbital energies ±1 (in units of). These are the roots of

P(x) = x6 — 6x4 + 9x2 — 4 = 0 . (12)

Trinajsti, Gutman and colleagues (Refs. 6,7) and Aihara (Ref. 8) developed their

beautifully elegant topological energy scheme using a graph theoretical theorem of Sachs

(Ref. 20) that shows how to compute the coefficients of P(x) directly from the molecular

structural formula without requiring the secular determinant.

To use Sachs' result, start by drawing the structural formula of the conjugated hydrocarbon,

omitting hydrogen atoms and double bonds. Thus, for benzene

5Q2
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This structural formula, called the molecular graph, shows which carbon atoms are bonded to

each other. The bonds are numbered for convenience in the following. It is first necessary

to define what are usually called Sachs graphs. These are obtained from the original

molecular graph by deleting bonds and atoms to leave disjoint bonds and/or rings with

associated atoms. For example, the bonds 1 and 3 form a Sachs graph with 4 atoms. The

bonds 1 and 2 do not constitute a Sachs graph since they are not disjoint (i.e. they

touch). Sachs' theorem then says that if a is the coefficient of N_1 in the secular

polynomial of an N—carbon conjugated hydrocarbon

a. = (1)c2rI (13)
S.
1

where S is a Sachs graph with i atoms, c is the number of components (i.e. disjoint parts)

in S and ri is the number of rings in S. Eq. (13) applies for i>O. The coefficient a0

always equals 1. In the case of benzene the coefficient a1 is obtained from all Sachs

graphs with 1 atom. There are no such in benzene or in any hydrocarbon so that one gets

immediately a1 = 0. To get a2, construct all Sachs graphs with 2 atoms. These are simply

the bonds 1 through 6. Each has 1 component and 0 rings. There are 6 of these; therefore

a2 = 6 X (_1)120 = —6 (14)

the coefficient a3 vanishes because benzene contains no 3—nembered rings and therefore no

Sachs graphs with 3 atoms. The 9 pairs of non—adjacent bonds (1,3), (1,4) ... (4,6) form

the Sachs graphs with 4 atoms. Each has 2 components and no rings to give

a4 = 9 X (1)2O = +9 . (15)

The coefficient a5 is zero since benzene has no 5—membered rings. There are 3 Sachs graphs

with 6 atoms. They are the two sets of three bonds (1,3,5) and (2,4,6) each with 3

components and 0 rings, and also the molecular graph itself with 1 component and 1 ring.

Therefore

a6 = 2 X (_1)320 + 1 X (_1)121 = 4 . (16)

These results of Eq. (13) do agree with Eq. (12).

Sachs' theorem has been generalized to include heterocyclic molecules (Ref s. 8,21,22), but

this will not be considered here.

Trinajstit and Aihara then reasoned that if the cyclic contributions to the coefficients in

Eq. (13) were dropped one would have a new set of coefficients for a polynomial

corresponding to a system like (in some sense) the original molecule, but without cycles.

They then defined this polynomial to be the secular equation of the reference structure.

Summing these filled roots gives the energy of the reference structure which when subtracted

from the pi energy of the original molecule gives what they have called the topological

resonance energy (TRE).

In the case of benzene, only the last coefficient contains any cyclic contribution.

Removing this gives the reference polynomial for benzene
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R(x) = x6 — 6x4 + 9x2 — 2 . (17)

The roots of eq. (17) are ±/2, ± (2 ± /3)1/2 giving E,,. (reference) = 7.727 and

TRE(benzene) = (8.000 — 7.727) = 0.273$.

Conjugated Circuits. The most recent of the four methods, and the one of the four that is

perhaps simplest in concept was developed by Randi (Ref s. 9,10) out of his considerable

graph theoretical work. To define the concept of conjugated circuit, imagine a particular

Kekul structure of some conjugated hydrocarbon. Start with any carbon atom, and traverse

any path through bonds, returning finally to the original atom. If the path consists of

alternating single and double bonds, the path is defined to be a conjugated circuit;

otherwise it is not. In Kekulé structure 4 above for naphthalene the right—hand ring of 6

atoms and the perimeter of 10 atoms both form conjugated circuits; the left—hand ring of 6

atoms does not.

To compute the resonance energy of a conjugated hydrocarbon by Randi's method:

1. Write down all Kekul structures of the hydrocarbon.

2. List all conjugated circuits in each. Discard the largest circuit in any

linearly dependent set (see below).

3. Add together R for each conjugated circuit of (4n + 2) atoms and for each

of 4n atoms. Values of these parameters are given in Ref. 10.

4. Divide this sum by the number of Kekul& structures.

In the case of naphthalene, the three Kekul structures above contribute 2R1, R1 + R2 and R1

+ R2 respectively to give the resonance energy

RE =
--[4R1

+ 2R2] = X 0.869 + 2 X 0.246] = 1.323 eV. (18)

The one complication occurs when there are linearly dependent conjugated circuits as in the

phenanthrene structure.

The central ring forms a 6—membered conjugated circuit; the two naphthalene fragments each

are lO—membered conjugated circuits; and the perimeter is a 14—membered conjugated circuit.

However the 14—membered circuit can be written as the sum of the two 10—circuits minus the

6—circuit. Randi therefore includes no contribution from the 14—circuit, the largest

member of the linearly dependent set.

INTERRELATION OF THE FOUR METHODS

REPE and Topological Resonance Energy. Suppose TRE is divided by the number of pi electrons

to give TREPE. REPE and TREPE are certainly similar in a general way. Both use a reference

structure that is acyclic—polyene—like, but in somewhat different senses. The REPE
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reference is like an acyclic polyene in that its energy is computed additively from bond

energies. The TREPE reference is like an acyclic polyene in that the coefficients in its

secular equation, when computed from Sachs' graph theoretical formula, contain no

contributions from cyclic subgraphs. Because of the polyene reference structure for REPE

and TREPE, both might be called Dewar resonance energies (Ref. 23) since he was the first to

propose this reference (Ref. 24). However it is not easy to see the quantitative

consequence of this similarity in spirit between REPE and TREPE.

The only more analytic investigation that we know is by Gutman (Ref. 25) who used Coulson's

contour integral to express the sum of orbital energies. The orbital pairing theorem is

built into this so the result applies strictly only to alternant hydrocarbons. Gutman also

used only two bond energy terms — one for double and one for single bonds. Dewar and de

Llano did use only two bond types in their original Pariser—Parr—Pople calculations

(Ref. 24); and two bond types have been used in connection with Hückel calculations of

aromaticity (Ref. 26); but 8 bond types (Ref. 1), two of which are arbitrary, seem required

for accurate results (Ref. 27). It is not clear why 8 bond types are required with the

HUckel method while the more elaborate PPP calculations need only 2.

Gutman's result, after normalization, is

TREPE REPE + (0.69/N)lnK (19)

where N is the number of pi electrons and K the number of Kekulé structures. Rather severe

approximations had to be made in Coulson's integral to get Eq. (19). The integral was

divided into two ranges, and it is not clear that the lower limit of the upper range is

large enough nor that the approximate integrand used in the lower range is accurate enough.

Eq. (19) could of course be tested by example, but this has not yet been done.

Valence Bond and Conjugated Circuits. At first sight Herndon's valence bond method which

involves resonance integrals between Kekulé structures and Randié's recipe in which one

counts conjugated circuits within each Kekulé structure appear to be unrelated, but

comparing the two methods in an actual application shows this is not true. Consider the

case of phenanthrene in Fig. 3.' The five Kekulé structures are shown with the conjugated

circuit contribution to resonance energy under each structure and the valence bond integrals

on the lines between structures. The R3 in parentheses under structure 5 is the one

discarded by Randi as linearly dependent. Summing the remaining conjugated circuits gives

RE(Randié) =
-(1OR1

+
4R2

+ R3), (20)

and the valence bond integrals give

RE(Herndon) = + 2 ÷ ,3). (21)

It may not be quite fair to call the result in Eq. (21) Herndon's resonance energy, since

strictly Herndon would have dropped 13 as insignificant. However, had he included

contributions through the same ring size as Randi, Eq. (21) would have been the result.

Eqs. (20) and (21) are almost identical if corresponding parameters are equated (i.e. if

Ri = y, and also for molecules with 4n rings).
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Fig. 3. Comparison of Randi's conjugated circuits and Herndon's
valence bond nethods in the case of phenanthrene.

The two results become entirely identical if in addition the discarded R3 contribution of

structure 5 is reincluded. It is true that the problem of linearly dependent structures

does arise in the valence bond method, but if the carbon atoms are numbered sequentially

around the phenanthrene perimeter, a Rumer diagram them shows all 5 Kekulé structures of

phenanthrene to be linearly independent (Ref. 28). Hence the linear dependence of valence

bond structures is not the same as the linear dependence of Randi's conjugated circuits.

This equivalence of the Randi and Herndon methods can be seen to be general if Randi's

rule for excluding linearly dependent cycles is dropped. Choose any Kekulé structure of the

conjugated hydrocarbon under consideration, and pick out one of its conjugated circuits.

There will be another Kekulé structure which differs only in the interchange of double and

single bonds in that circuit. Each of the two contributes Ri (or to the sum in Randi's

method, and the interaction between the two contributes (or 2wi) to Hermdom's sum. Thus

every such pair that contributes 2R (or to Randi's suni contributes 2j (or 2wi) to

Herndom's. Conversely for each 2 (or 2wi) in Herndon's sum the corresponding pair of

structures contributes 2R. (or in Randi's. Consequently, if linearly dependent cycles

are included and if R. = V and Q = w., the two method are identical.
1 i i 1

Randi finds that after discarding linearly dependent circuits, there remains the same

number of conjugated circuits in each Kekulé structure. This convenient result appears to

be the main justification for the rule (Ref. 29). On the other hand bringing the method

into agreement with Herndon's valence bond technique is at least as powerful a reason to

retain the linearly dependent circuits. In practice the choice is not expected to make a

large difference in computed resonance energies since it is only larger rings with

relatively small resonance contributions that are in question.

2R1+R2 2R1+R2
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The exact equivalence of the Herndon and Randi methods which at first appear so different

is a pleasing result and causes each method to constitute a further justification of the

other.

REPE and Valence Bond. Since resonance energy in Herndon's valence bond method is the

difference between the actual energy and the energy of a single Kekulé structure, all of

which are assumed to be isoenergetic, the reference structure here is actually a single

Kekulé structure. A Kekulé structure perhaps looks polyene—like as it is usually pictured,

and this night lead one to expect a connection between REPE and Herndon's method, but in a

more exact way what is the energy of such a reference structure? This question is examined

in the Appendix, but its importance is diminished by the fact that Herndon's treatment

differs in a crucial way from the standard valence bond method.

If a molecule has two isoenergetic Kekulé structures with orthonormal (lack of orthogonality

would not affect the results here in any significant way) wavefunctions and *2 the

ground—state wavefunction is

'P + 4) (22)

with energy

E =
H11 + H12 (23)

where the resonance energy H12 is negative. Should H12 turn out to be positive, as can

always be made to happen by an arbitrary change of sign of functions for one of the Kekulé

structures, then the ground—state wavefunction is instead

'P J2'1 — (24)

with energy

E =
H11 — H12. (25)

The point is that resonance between two Kekulé structures must always lower the energy by an

amount 1H121 . It cannot raise the energy of the ground state.

This result applies to cyclobutadiene as truly as to benzene. In an early calculation

Wheland (Ref. 30) decided the valence bond method to be better than the molecular orbital

method because the VB method gives a resonance energy lowering for cyclobutadiene while the

MO method does not. Now, when the chemistry of cyclobutadiene is better known, this result

has become an embarrassment to the valence bond method. A key feature of Herndon's success

is that he forces the resonance interactions of 4n rings to be destabilizing in spite of the

standard VB result to the contrary. The exceptional instability of cyclobutadiene makes one

feel that Herndon's choice is correct, and theoretical work by Dewar and Longuet—Higgins

(Ref. 31) givesfurther support. Dewar and Longuet—Higgins found that if the H'itckel secular

determinant of an alternant hydrocarbon is arranged so that all starred atoms precede all

unstarred, then the upper right quadrant is given by the number of Kekulé structures if

these are given signs in a way that 4n rings contribute negative factors.
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Nevertheless, Herndon's choice causes his technique to be quite unlike the original VB

method so that seeking connections between REPE and his method through details of a rigorous

VB calculation does not look profitable. Instead, in view of the equivalence between the

Randi and Herndon methods, it might be more straightforward to look for relations between

REPE and Randi's method in which resonance energy can be thought of as the average over all

Kekulé structures of simple additive contributions from conjugated circuits in each. This

additivity is reminiscent of the bond energy additivity in acyclic polyenes and might be

analyzed in a similar way.

We have shown that an acyclic polyene can be treated as a set of mutually perturbing C=C

units (Ref. 32). In zero order, the total energy contributions is 2for each double bond.

In first order, each orbital energy is greatly affected, but there is zero effect on total

energy. Second—order terms give exactly ,6/2 for each single bond. The sum of third—order

terms vanishes. At this poInt we were confounded by the complexity of the analysis, but

computational examples showed small additive contributions in fourth order which resulted in

bond energy terms very close to those used empirically for REPE reference structures. The

sum of fifth—order terms vanishes, and there appears to be some breakdown of additivity in

sixth order.

The same treatment has now been applied to cyclic conjugated hydrocarbons to see whether

they can be described in terms of the same bond energies plus certain cyclic contributions.

If they can, and if the cyclic contributions are like those in the Randié method, a

connection between REPE and the methods of Randié and Herndon will have been demonstrated.

In the treatment of acyclic systems we worked with the 1—electron orbitals. We have since

found that using the n—electron wavefunction is actually simpler. The reason is that in

zero order the lower orbital from each ethylene unit is degenerate with all the others. The

proper linear combination varies from system to system so it is necessary to continue

without knowing the exact form of the zero—order 1—electron wavefunction; but if the

n—electron wavefunction is used instead, all lower orbitals are completely filled, there is

no degeneracy, and the exact form of the zero—order function is known. A further advantage
is that, while the 1—electron treatment was restricted to cases where all orbital degeneracy

is removed in first order and where empty and filled zero—order orbitals do not interchange

in first order, these restrictions are removed in the n—electron treatment. Using the

n—electron wavefunction does not allow one to follow perturbation effects in individual
orbitals, but these are not needed.

Imagine first a chain of C—C units each with a pair of pir orbitals 4 and a pair of pi
electrons

C =C ... C=C ... C=C12 34 56
The solid lines become double bonds and the dotted lines single bonds in the resulting

polyene. The Hamiltonian H is a sum of 1—electron operators in the HUckel approximation

N
H(1,2...N) = > h(i) (26)

i=1
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and each of these will be written as a zero—order part plus a perturbation

h =
h0

+ h' . (27)

So that

<11Ih0I4'> = (28)

if atoms i and j are connected by a solid line in the drawing above, and

= (29)

if atoms i and j are connected by a dotted line, and

<iI1'OIj> = <4Ih'Il> = 0 (30)

otherwise. Eq. (26) implies that the total wavefunction will factor into 1—electron

orbitals, and it does not matter whether a simple or antisymmetrized product is used. It

will be simpler to work with the simple product

.N) = i4i(1)a(1)4'(2)(2) . . . *,12(N)(N) (31)

where

'' =j< +
2 =A<'t'3 +4) ; etc . (32)

The zero—order energy is

E0
=<'4'I h0(i)I'P> = N (33)

where the in Eq. (33) is the usual resonance integral of H'dckel theory and not to be

confused with the spin function$ in Eq. (31). The result in Eq. (33) of 2for each

ethylene unit is as expected.

In first order

E1 = <4I Eh'in'P> . (34)
I

A typical term in Eq. (34) is

<1Ii(1)a(1)iIj(2)8(2) ... Ih'(1)I1k(1)a(1) ...>

= <4'1(1)Ih'(1)14'1(1)> <*(2)*(2)> ... <*N/2'!'N/2)>
= Z41 + 42(1)Ih'(1)I1(1) + 2(1)> = 0 . (35)

The integral in Eq. (34) vanishes because of Eqs. (28)—(30). In a similar way all other

terms in Eq. (35) vanish to give
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E1 = 0 (36)

The second—order energy is

(2) 'c' l<%PIH'I'Pi>12E =

i —
(37)

i

where the excited states are obtained by replacing one or more ground state orbitals in p

by the excited orbitals

* — #2) —.V)i(#3
—

#4) ; etc. (38)

For example replacing icz by ijça gives

th'(l) ÷ ... + h'(N)I'j(1)a(1)*1(2)(2) ...>i2

= -{<*1uh'un*10> ÷ 0 + ... + o]2

= #2I'I#1 + #2>] = 0 (39)

but replacing *1a by '! gives in a similar way

—
#41h1#1 + #2>] = 12 = B/8 . (40)

A nonvanishing integral is obtained only if a ground orbital on one ethylene unit is

replaced by an excited orbital of the same spin from a neighboring unit. For each pair of

neighbors this can be done in four ways: replace

1Ila by *÷1a 4÷5 by iIijU

by I]9 by $ (41)

To give a contribution of

4($/8) = $12 (42)

for each single bond in the polyene. All multiple excitations give only vanishing

integrals.

The results so far simplify the analysis of the third—order energy (Ref. 33).

<''IH'I'P><'PIH'I''><'VIH'I''>

i j (E — E )(E. — E )I 3
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The excited function in Eq. (43) must differ from " by a single excitation across a

single bond. would then interact with''. if it contained a second such excitation, but

the resulting doubly—excited would have a zero matrix element with 1' making the entire

term in Eq. (43) vanish. Alternatively, if contains an excitation across the bond

between ethylene units r and r + 1 the matrix element between 'i'. and 'P. will be non—zero if
1 J

this excitation is moved forward to ethylene unit r + 2 in 'P. It cannot be moved back to

unit r since that would give a 'P. that does not interact with 'P. Even so the 'I'. with the
3 3

single excitation moved foward can interact with 'P only if ethylene units r and r + 2 are

adjacent. This is true in the case of a 6—membered ring, but never for an open chain.

Therefore for the linear chain

E3 = 0 . (44)

The example of a linear chain has been used but the results so far are easily seen to apply

to all acyclic polyenes. It can also be seen how the effects of ring formation will alter
these results. Consider two ethylene units arranged in a cyclobutadiene ring. The zero—

and first—order results above all apply, and the second—order analysis holds through

Eq. (39), but in Eq. (40) there is an additional negative interaction between and that

cancels the positive effect between 2 and 43 As a result all second—order terms vanish in

cyclobutadiene; and, unlike all other cases, the single bonds in cyclobutadiene do not

contribute $12 to the pi—binding energy. Further, all integrals in all higher perturbation

terms will vanish in exactly the same way. Cyclobutadiene appears as a very special

molecule in which the perturbation series terminates at zero—order and in which the
exceptional antiaromaticity is caused by vanishing of the single bond interactions that

stabilize all other systems.

Third—order effects, which vanish in acyclics, explain the aromaticity of the benzene ring.

There are 12 non—zero terms of the kind described above. Each equals

= $132 (45)
4$2

giving a total of

3$/8 = 0.375,9 (46)

in good agreement with our benzene resonance energy of 0.392,9 (Ref. 1). Higher order terms

are also expected to contribute, but the first effect of the benzene ring in third—order

appears to be dominant.

We have not yet extended the analysis past this point, but it looks as though it will be

much easier to do than with our previous 1—electron treatment (Ref. 32). It can be seen

that the effect of an N—carbon ring will first appear in N/2 order, and the sign of the

effect does seem to alternate as the ring is increased by each 2—carbon unit.

In an acyclic hydrocarbon there is only one way to dissect the molecule into ethylene units.

This is not true in cyclics where each Kekul structure corresponds to a possible

dissection, and conversely. The reference energies formed from additive acyclic bond

contributions are very nearly identical for all Kekulê structures (and could be made
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identical with no significant consequences — see Eq. (12) of Ref. (3)), but this may not be

true for cyclic effects in all orders of perturbation. That is, while we expect each

dissection to give the correct result in the infinite limit, certain cyclic effects may

appear in lower order in some dissections than in others. This may suggest an averaging of

the low—order effects over all Kekulé structures as in the Randi method.

CONCLUSION

Roughly, and prematurely since the perturbation analysis of the last section is far from

complete, the four ways of calculating aromatic character examined are all interrelated and

all may express the same simple physical fact that for conjugated, neutral, closed—shell

hydrocarbons, but not necessarily for ions and radicals which were not considered, the pi

energy of acyclic systems is approximately additive in terms of bond energies, and that ring

formation makes further energy contributions, manifest as aromaticity or antiaromaticity,

which are also additive, or perhaps additive to the energy of each of several Kekul

structures whose contributions are averaged.

APPENDIX

Cyclobutadiene has zero resonance energy in the MO method, but a negative (i.e.

stabilizing) resonance energy in the VB method. This means that in the MO method

cyclobutadiene is computed to be equal in energy to the reference of two ethylene molecules,

while in the VB method it is lower in energy than the reference of a single KekuTh

structure. This still leaves open the question of how the two reference structures compare

in energy. The probable reason for this logical gap is that it is usual to express VB and

MO results in terms of different parameters so that they are not directly comparable. We
shall show that results from the two methods can be written in the same parameters and the

comparison of reference structures made.

In the VB method the two Kekulé structures and their wavefunctions are (see Chapt. 4 of

Ref. 28)

12*4*5+4'6) __

= - *2 + *3 - *6)
1 ]

(Al)

4 3
where the spin—state functions

*1 = (4!)'2 detI1(1)a(1) 2(2)2) 3(3)$(3) #4(4)a(4)I
*2 = (4!)h/'2 4(4)U(4)I

*3 = (4!)1l'2 detI1(1)$(1) 2(2)u(2)3(3)a(3) 4(4)(4)I
*4 = (4!)'2 detI#1(1)(l) 2(2)2) •3(3)a(3) 4(4)a(4)I
*5 = (4!)hI'2 detI1(1)a(1) 2(2)a(2) 3(3)(3) 4(4)(4)I
*6 = (4!)h/'2 det1(1)a(1) 2(2)18(2) 43(3)a(3) 4(4)(4)I (A2)
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are constructed from 2pir atomic orbitals on carbon atom i as numbered in the Kekulé

structures.

Solution of the secular equation

<1IHIcZ1> - E <TIHI2>- ES
=0

<2IHI1> - ES <'Z?2IHI2> - E (A3)

together with the fact that

<'Z1IHI41> = <2IHI2> (A4)

gives

<IHI1> ± <IHl2>E =
± <cZI> (A5)

The overlap integral is given by

= 4<'2 -
*4

-
*5 + *61*1

-
*2 + *3

-
*6> = -1/2 (A6)

using the fact that the spin—state functions (A2) are orthonormal. The remaining integrals

in (A5) can also be experessed in terms of integrals over the spin—state functions such as

<*21H1*2>
= f4(1)a(l) ... H deti1(l) ... #4(4)(4)Idr . (A7)

In the VB method this is left as the parameter Q, but if we make the MO assumption of

Eq. (26) the Hamiltonian gives four 1—electron terms. Each of these, if we drop terms in

2 52a 53 and higher, where S is the overlap integral between two 's on adjacent carbon

atoms, gives a nonvanishing integral with the identity permutation from the determinant in

(A7). The result is

<*21H1*2> = 4 . (A8)

The a in (A8) and the ,9 to appear below in (A9) are the Coulomb and resonance integrals of

the MO method and must not be confused with the a and $ spin functions in (A2). Similarly

<*21H1*4> = —2S , etc. (A9)

Combining all required spin—state integrals gives the energy of the two cyclobutadiene
Kekulé structures as

= <'2IHI2> = 4a + 2S (AlO)

and

<1IHI'Z2> = -2a - 4S$ . (All)



A comparison of recent theoretical aromaticity indices 1113

The cyclobutadiene ground—state energy, corresponding to the negative sign in (A5) is then

E = 4(a + S) . (A12)

A similar calculation on ethylene gives a ground state energy of 2(a +S). Thus in the VB

method, just as in the MO method the energy of cyclobutadiene equals that of two ethylene

molecules. In fact, the energy expressions are quite similar in the two methods with S$ in

the valence bond method taking the place of$ in the MO result. Hence the apparent

disagreement between the VB and MO results for cyclobutadiene is caused by a different

choice of reference in the two methods.

Unfortunately, this accord is lost if we repeat the same calculations on benzene where it is

found that

E(Kekul structure) = 6a + 3S6

E(benzene) = 6a + 24S$/5

E(3 ethylene) = 6(a + 5$) . (A13)

As in cyclobutadiene the VB and MO references differ, but in the VB method benzene appears

to be higher in energy than three ethylene molecules.

It might be argued that terms in S2a should have been retained since, with S = 0.25, a =

—11.16 eV (Ref. 34) and $ = —1.4 to —2.4 eV (Ref. 35), S2a is of the same magnitude as S$.

However repeating the calculations above with S2 and S2a terms retained gives no significant

changes for reasonable values of S and$.
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