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CHALLENGING PROBLEMS INVOLVING BENZENOID POLYCYCLICS AND

RELATED SYSTEMS

Alexandru T. Balaban

The Polytechnic, Organic Chemistry Department, Bticharest, Roumania

Abstract - Five theoretical and/or experimental problems involving
benzenoid polycyclics and related eystems are discussed. The dualiet
graph characterizes uniquely any polycyclic aromatic hydrocarbon (PAH
or pol.yhex), and differentiates between catafusenes, perifusenes and
coronafusenes (catahexes, perihexes, coronahexes).
1. The topology of catafusenes, expre8sed by their dualist graphs, can
be correlated with the rates of Diels-.Alder addition to maleic anhyd-.
ride (determined by Bierxnann and Schmidt, 1980). The most important
topological parameter in this correlation is the number of rings in
the longest acene portion of the catafu8ene. The topology at the ends
of this longest acene portion constitutes the second parameter.
2. As known, the carcinogenic activity of PAH's is connected with the
existence of bay—regions. Simple topological rules making use of dual..
ist graphs can be implemented by means of a computer program to explore
all PAH structures with or without bay—regions. However, the problem is
much more complex, because there exist many PAll's with bay—regions that
are not carcinogenic, and a few carcinogenic PAH's without a bay—region.
3. Owing to its remarkable structure of coronafusene, kekulene may
afford aza—analogues which should lead to highly interesting metallic
complexes. The number of possibilities is much higher than in the case
of porphyrins and related structures. These possibilities are reviewed
and their potential applications are highlighted. As yet, no experimen-
tal data are available, but such polydentate ligands represent an
exciting synthetic challenge for organic chemists.
4. So far, no experimental determinations of "local ring current" or
"benzene character" in PAll's exist, though the theory has been much
discussed (Clar, Polansky, Herndon, Randi6, Hosoya, Aihara, Gutman,
Trinajsti, Bonchev). By means of proton NMR spectra of N—aryl—2,4,6—
trimethylpyridinium salts (readily available from primary arylamines
and 2,4,6—trimethylpyrylium salts), one can measure ring currents in
the N—aryl group, and one should be able to calculate therefrom local
ring currents. Experimental data with all isomeric naphthyl and anthryl
groups show, however, that the theory of shielding is not precise
enough Johnson—Bovey's data yield too high, Haigh—Mallion's data too
low effects relatively to the measured ones. Even using corrections for
dihedral angles and C—N bond distances, discrepancies are too large.
5. By means of dualist graphs, a simple rule is devised for establish-
ing whether a given polyhex is a free radical (mono— or poly—radical),
or a normal compound possessing a Kekulé structure. However, there
exists a class of diradicals which are not encompassed by this rule, so
that a universal procedure for establishing simply whether a given PAM
has, or does not have, Kekulê structures, has now been found (Appendix).

INTRODUCTION

Scope of this paper
In the lecture held at the International Symposium on Aromaticity (Dubrovnik,
Croatia, Yugoslavia 3—5 September 1979) under the title "Is Aromaticity
Outmoded ?" (Ref. iS, I tried to illustrate the idea that research on new and
old aromatic systems is still an active area full of exciting and enticing
unknowns, and at the end of that lecture I presented a few future prospects
and general challenges. The present lecture is intended to be, in a certain
respect, a continuation of the previous one, namely to discuss challenging,
open research problems relating, however, only to a restricted area centered
around condensed polycyclic benzenoid systems. Thus, rather than presenting
one set of finished, complete results, it is hoped to convey better the
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message that research involving aromatic structures is a living field, by
bringing before you several pieces of still crudely shaped ideas and provisio—
nal results from our laboratory, hoping also that some of these ideas may
benefit from discussions or collaborations, or may serve as incentive for
other research groups.

Polyhexes and theirduali8t graph$
Polycyclic benzenoid hydrocarbons (or polyhexes, or Polycyclic Aromatic Hydro—
carbons, to be abridged as PAH's) are structures composed only of condensed
benzenoid rings, wherein all carbon atoms have sp2hybridization. Their
hydrogen—depleted graphs are portions of the graphite (honeycomb) lattice.
Unless otherwise stated, the following discussion will only deal with systems
devoid of side—chains.

Balaban and Harary (Ref. 2) proposed to characterize all PAll's by their dual—
_t. (characteristic) graphs, consisting of vertices situated at the centres of
benzenoid rings, and of edges connecting vertices corresponding to condensed
benzenoid rings. Such graphs are related to the dual graphs which are well
known in Graph Theory, but differ from them because in dualist graphs (i) no
vertex extsts corresponding to the outer region, therefore dualist graphs are
related to internal duals, and (ii) angles are important, unlike any other
graphs.

These dualist graphs have become an accepted tool for characterizing the topo—
logy of polyhexes, for nomenclature and coding purposes (Refs. 3 and 4), and
for the classification of polyhexes (PAll's) into three classes

(1) catafu8enes (catahexes), when the dualist graphs are trees (i.e.,
have no cycles)

(2) perifusenes (perihexes), when the dualist graphs have three—mem—
bered rings (possibly in addition to tree—like branches as side—chains)

(3) coronafusenes (coronahexes), when the dualist graphs have larger
rings (8—, 10—, or larger—membered rings, possibly in addition to three—mem—
bered rings and side-chains. A special group of coronafusenes is represented
by corannulenes which were discussed by Agranat, Hess and Schaad (Ref. 5)
the dualist graphs of corannulenes is a single ring of 8 or more vertices.
More will be said about corannulenes in a later Section of this paper.

On the basis of these ideas, an enumeration of non—branched (Ref. 2) and
branched catafusenes (Ref. 6) was possible. Folansky and Rouvray have formal-
ized the description of polyhexes by means of dualist graphs (Refs. 7 and 8).

The three—digit code developed for catafusene (Ref s. 2 and 3) symbolizes
linear annelation by digit 0, and kinked annelation by digits 1 or 2 for
clockwise or anticlockwise kinks, respectively, in following the dualist graph
from one endpoint of the graph, with the proviso that the code should corres-
pond to the lowest possible number formed from these digits when there are
several alternatives. This is illustrated by Fig. 1.

1 (or 2)

2 (or 1)
Code . 001

Fig. 1. Exemplification of three—digit code f or catafusenes.

A correspondence exists between the three—digit code of catafusenes and the
coding system for staggered alkane rotamers (Ref s. 9 and 10) which can act as
dualist graphs for three—dimensional portions of the diamond lattice, i. e.,
for diamond hydrocarbons like triamantane, tetramantane, etc. A coding and
nomenclature system was accordingly devised for such diamond hydrocarbons by
Balaban and Schleyer (ref. 10).

Ref. 11 shows that resonance energies of catafusenes are linearly dependent on
the number of zero digits in their three—digit code, and in the number of ben—
zenoid rings. Most properties do not differ if digits 1 and 2 are interchanged
(an example will be given in the next Section), so that the three—digit code
may be converted for certain purposes into a topological index for catafusenes
by the "L—transform of their three—digit codes", wherein digits 1 and 2 are
replaced by 1 and the resulting code is read as a binary number for non—bran-
ched catafusenes (Ref. 12). This topological index can serve the same purposes
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as the sextet polynomial introduced by Hosoya and Yamaguchi (Ref. 13). How—
ever, for branched catafusenes the L—trarisforsn needs additional conventions,
and it is not applicable to perifusenes.

TOPOLOGICAL CORRELATIONS BETWEEN STRUCTURE AND REACTION RATE FOR PAH ' s

Usually for quantitative structure—activity relationships the chemical struc-
ture is analyzed in terms of electronic, steric of hydrophobic interactions. A
new trend which has developed rapidly in the last two decades converts the
chemical structure into topological indices (Ref. 14). In the present Section
we shall develop a mathematical model for a topological correlation between
the chemical structure of catafusenes and their reaction rate with maleic an—
hydride in Diels—Alder cycloadditions. Biermann and Schmidt (ref. 15) have
determined with a sensitive spectrophotometric technique and with high pre-
cision these second—order reaction rates k2 for a large range of 46 cataf use—
nes. These reaction rates span a range of relative values from I to 5,000,000
and are therefore conveniently expressed in logarithmic form, 6 + ig k2.

For rationalizing the observed rate constants, Biermann and Schmidt carried
out MO calculations (Ref. 15), determining —localization energies P after

Brown, and second—order stabilization energies X E(2) using a semi—empirical
perturbational approach based on lIMO—calculated ionization potentials (instead
of Fukui's treatment which proved unsatisfactory). For a more restricted group
of 21 catafusenes whose first two ionization potentials 1P1 and 1P2 were known

from photoelectron spectra, they also obtained satisfactory correlations with
the difference £IP = 1P2

—
1P1 , or a weighted difference between these ioni-

zation potentials. These last correlations suggest that UV data should also
correlate with the Diels—Alder reactivity, as was noticed earlier by Clar
indeed, a weighted difference between the experimentally determined energies
B2 and B of the 2— and p—bands in the electronic absorption spectrum corre-
lates we'l with the observed reaction rates. All these correlations and the
resulted standard deviations are summarized in Table 1.

TABLE 1. Correlations between reaction rates of catafusenes
expressed as (6 + ig k2) and quantum—chemical parameters
after Biermann and Schmidt (ref. 15)

6 1 k+ g 2
Standard
deviation

Number of
catafusenes

=
=

49.10 + 13.59 P
—46.84 — 334.74ZE

0.410

0.283
=
=
=

0.029 + 3.983 ( IP —
1P1

17.28 + 7.52 ( 0.347 1P2
9.107 + 5.758( 0.283 B2

)
—

—

0.653

0.717
1P1

E)
)

0.589

0.265

0.287

21

= 48.53 + 13.49 P 0.361
= -.46.08 — 328.32XE 0.274

It has been known for a long time that the results of the HUckel MO theory are
solely and entirely determined by the carbon—atom connectivity (the topology)
of the conjugated system under investigation (Ref s, 16—19). Therefore one
could expect the existence of short—cuts connecting more directly the molecu-
lar topology with the experimental data (which n our case are the reaction
rates), obviating the need for elaborate MO calculations. As expression of the
molecular topology we use the dualist graph, and we note from Biermann and
Schmidt's original papers that no diene reactivity towards inaleic arihydride is
observed unless the catafusene possesses at least three linearly condensed
benzenoid rings, i. e. an anthracene moiety. e therefore use as the main
topological parameter the number n of edges in the longest rectilinear portion
of the dualist graph, representing thus the longest acene portion of the cata—
fusene for anthracene n = 2, and for pentacene n = 4.

On representing the reaction rates (6 + ig k2) versus ig n (Fig. 2), it is
apparent that the reaction rates of all 46 catafusenes follow a general trend
which can lead to a simple mathematical model : depending on the geometry at
the ends of the longest rectilinear portion of the dualist graph, all 46
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points fall on a converging family of straight lines, having a common point
(n 14, 6 + lg k2 = 10.6). The nine straight lines which fan out at regular
angles from this point are determined by the topological rules presented in
Table 2. Equations of these straight lines and calculated reaction rates are
presented in Tables 3 and 4. The standard deviation for all 46 points is 0.114
which is much lees than the values from Table 1. As seen from Table 4 for com-
pounds No. 4, 24 and 43, there are only three deviations as large as 0.21—0.31,
most of the deviations being lower than 0.1.

0.3 0.14 0.5 0.6 0.7

Fig. 2. Plot of Diels—Alder reaction rates of catafusenes with maleic
anhydride (numbering of catafusenes as in Table 4) versus lg n. The
nine straight lines are denoted A—I according to Tables 2—4.

Some comments on the topological rules presented in Table 2 are necessary.
Since only the largest acene portion is relevant, smaller acene portions act
only by influencing the geometry at the end(s) of the largest acene portion.
when the molecule possesses several equally longest acene portions, only that
portion is "active" which has the less substituted end(s) according to Rules
1 and 3 from Table 2, because only the more reactive portion determines the
reaction rate. The column labelled "effect" indicates the number of upward
(+), or downward (—), jumps between successive lines A—I on effecting each
type of annelation (the newly added ring is symbolized by a white point of
the dualist graph). When a line may be reached from above or from below, the
result is discriminated by prime symbols (' or ") following the indication of
the line in Tables 2 and 4, but not in Fig. 2 or in Table 3.

Outstanding features in this correlation are
(1) The large positive effect of collinear annelation of an acene (increasing

Ign

2 3 n
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TABLE 2. Topoloical rules for the assignment of catafusenes
to one of the straight lines in Fig. 2.

Rule Annelat ion Effect E xamp le

1

2

- - --- - - - -

+

3

1

A

D

- D ; D

C;G
+ G

+F;E +D'

3

- - ._t' — - - -._/'°
-
+

1

1

D

B

-*E;G

D" ;

+H;H
C B

I
5

6

- - - - J /

- or -

— 1

0

D

E

B'

*E"

TABLE 3. Equations of straight lines A—I and rate constants (6 + lg k2)
calculated therefrom ; in brackets, predicted values without experimen-
tal counterparts ; values without brackets are compared with experimen-
tal ones in Table 4.

Type Line Equati on n=2 n3 n=4 n=5
A 9.74 lg n + 0.28 3.21 4.93 6.14 7.09

__r— B 10.14 lg n — 0.15 2.90 (4.69) (5.95) (6.94)

C 10.58 lg n — 0.61 2.57 4.44 (5.76) (6.79)

D 11.16 ig n — 1.23 2.13 4.09 5.49 6.57
—< B 11.66 ig n — 1.76 1.79 3.80 5.26 (6.39)

12.16 lg n — 2.29 1.37 (3.51) (5,03) (6.21)

G 12.68 ig n — 2.84 0.98 3.21 4.79 (6.02)

H 13.21 ig n — 3.40 0.58 2.90 (4.55) (5.83)
I 13.75 lg n — 3.98 0.16 2.58 4.30 (5.63)

TABLE 4. Structures of catafusenes (expressed through their dualist
graphs), and Diels—Alder reaction rates (experimental data after
Biermann and Schmidt, calculated data after Table 3). Straight line
designations A—I after Fig. 2 and Tables 2 and 3.

C a t a f u s e n e Reaction rate (6+lg k2)
Number Dualist graph n Line Experiin. Calculated

1 2 A 3.36 3.21

2 3 A 4.97 4.93
3 •• • •• 4 A 6.22 6.14

4 • • 5 5 A 6.82 7.09

5 2 B 3.03 2.90

6 2 B 2.93 2,90
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TABLE 4 (continued)

C a t
Number

a f u s e
Dualist graph

n e
n Line Experim.

Reactionrate(6+lgk2)
Calculated

7

:

10

_f 2

:

2

C

:
C

2.58

::
2.62

2.57

::
2.57

11 3 C 4.41 4.44
12

13

3

3

C

C

4.39

4.43

4.44

4.44

14

15

2

2

D

D"

2.13

2.20

2.13

2.13

16 ., 2 D' 2.15 2.13

17 3 D 4.23 4.09

18 3 D' 3.93 4.09

19 ,,,_,/ 4 D 5.65 5.49
20 5 D 6.48 6.57

21 2 E 1.83 1.79

22 2 E' 1.82 1.79

23 2 E' 1.74 1.79

24 ,_IP'' 2 E' 2.00 1.79

25 2 E" 1.78 1.79

26 2 E" 1.77 1.79

27 2 B" 1.82 1.79

28 3 B 3.77 3.80

29 3 E' 3.82 3.80

30 3 B' 3.97 3.80

31 3 B" 3.90 3.80

: ::
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TABLE 4 (continued)

C a t a f u s e n Reaction rate (6+lg k2)
Number Dualist graph n Line Experitn. Calculated

34 2 F 1.45 1.37

35 2 G 1.02 0.98

36 2 G 1.02 0.98

37 2 G 0.91 0.98

1
40 4 G 4.88 4.79

41 2 H 0.53 0.58

42 3 H 2.76 2.90

:::

45 3 I 2.38 2.58

-

46 4 I 4.34

-

4.30

by 1 the value of n) the additional rate increase tends, however, to become
logarithmically smaller as n increases.
(2) The marked negative effect of "kinked annelation" of an acene (Rule 1) at
either end of the longest acene portion.
(3) The small negative effect (Rule 3) of "branching annelation" when the
newly added ring becomes attached to a bay—region (which will be defined in
the Section on carcinogenicity) ; the similar effect of a collinear annelation
after a bay region (Rule 5), and the null effect of a branching annelation
when there is no bay—region (Rule 6) are to be contrasted to Rule 4 which
indicates a small positive effect if the longest acene portion is parallel to
the collinear annelation after a bay-region.
(4) Interestingly, Rule 2 shows a small positive effect of a kinked annelation
after a bay—region. The direction of the kink (coded by digits 1 or 2 in the
three—digit code) is irrelevant, as illustrated by comparing the reaction
rates of compounds 35 or 36, and 38 or 39. In this respect, one may recall
that the "L—transform" of the three—digit code ignores the difference between
the digits 1 and 2, and only indicates if the arinelation is collinear or
kinked (Ref. 12) the information thus provided is essentially similar to
that conveyed by Hosoya's sextet polynomial (Ref. 13). Apparently, thie kind
of information is important for rates of the Diels-.Alder reaction, so that one
may hope that this information will eventually be available for all catahexes
as a topological index. Thus instead of a two—parametric correlation such as
the present one, a monoparametric correlation ought to be possible.
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Still, this crude mathematical model (which, like any such model does not try
to afford any explanation of the underlying phenomenon), using as aiain para-
meter the value of n and as additional criterion the assignment to one of the
straight lines A-1 according to the topoiogical rules from Table 2, is able to
rationalize and predict a large anount of data without any elaborate calcula-
tions, namely all rate constants with and without brackets from Table 3. It is
also fairly certain that the rate of the dibenzopentacene related to compound
40 (Table 4) as the dibenzotetracene 38 is related to 39, or a 36 is related
to 35, will have a very similar reaction rate to that exhibited by compound 40.

It is an open problem to try and explain why this model works, and why the
straight lines from Fig. 2 meet at a common point around n 14.

TOPOLOGY OF BAY—REGIONS AND CARCINOGENICITY OF POLYHEXES (PAll's)

The cancer scare needs hardly any emphasi Not only has cancer nowadays
become the second major cause of death in developed countries by suppression
or elimination of infectious diseases, but it has increased in absolute nuin-
bers of cases. Apparently the polluted environment contributes substantially
to this increased risk factor. Polycyclic aromatic hydrocarbons and nitrosa—
mines are present in tobacco smoke, in exhaust gases, in smoked aliments, etc.
An estimated rate of 1.3 billion grams per year of benzo[a]pyrene which is a
potent carcinogen in milligram amounts, is released into the environment in
the USA alone (Ref s. 20, 21).

After the initial proposals by French theoretical chemists (Ref 5. 22, 23) that
certain regions (K and L with particular electronic features) in PAH's are
responsible for the carcinogenic activity, it was demonstrated by Jerina and
his co—workers from the N.I.H. (Bethesda, Maryland) that diol—epoxides at a
benzenoid ring belonging to a bay—region are the ultimate carcinogens (Ref s.
24—26). Virtually any PAH having a bay-region also incorporates a K—region, so
that the Pullmans and Daudels had guessed right.

A bay—region is defined as one benzenoid ring condensed angularly to a PAll
skeleton (in Fig. 3, the broken lines may be C—C or C—H bonds, but the ben—
zenoid ring adjacent to the bay—region must have four C—H bonds since here the
diol—epoxide will be formed). By nucleophilic attack on the epoxydiol, DNA
becomes irreversibly bonded to PAR residues. The ring—opening of the epoxide
ring as indicated by the curved arrow is facilitated by the presence of the
adjacent bay-region.

bay—region

(stereo—
metabolic oxidation isomers)III

Fig. 3. Bay—region of a PAll and formation of a diol—epoxide.

Since it admits a simple topological definition, a bay—region may be alterna-
tively defined by means of the dualist graph a bay—region is present in a
PAll if its dualist graph has an endpoint adjacent to a kink, i. e. if the
edge starting from the endpoint forms with an adjacent adge an angle of 120
In the following formulas, only the first three carcinogenic PAll's have bay
regions because they have a kink adjacent to one endpoint of the dualist
graph ; the fourth non—carcinogenic pentaphene has a kink which is not adja-
cent to an endpoint, while the fifth non—carcinogenic perylene has no endpoint.

Polyhexes with bay—regions ; and without bay—regions

Fig. 4. Three PAll's with bay-regions and two without bay—regions.

H
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Together with Dr. K. Balasubrainaniari and Professors Joyce J. Kaufman and W. S.
Koski from the Johns Hopkins University, a computer program was elaborated and
publi8hed for generating PAH's and identifying bay—regions (Ref. 27). The pro-.
gram generate2 non—branched and branched catafusenes (it also accomodates
perifusenes) and prints out the three—digit code and the number of bays for
each structure. It also prints or displays the structural formula of the PAIl.
For catafusenes, bays are counted by a scan algorithm which starts from one
endpoint of the dualist graph (which is not always that one ending up in the
minimal number, the actual code). The existence of a bay—region at the i—th
stage depends on the i—th digit of the code (which must be 1 or 2 symbolizing
a kink) and on the degree of the i—th vertex or of vertices two edges away
from the i—th vertex (which degree must be 1 to symbolize one endpoint of the
dualist graph) . A counter keeps track of the bays at each stage i , arid it
prints out the number of bays at the end of the scan.
thieful as it i, this program cannot overcome the handicaps of this difficult
research field
(1) The presence of one or more bay—regions is not sufficient for carcinoge—
nicity. Indeed, for many PAH's with bay—regions which were 'tested, no carcino..
genic activity was found (Ref. 28).
(2) Though most of the proven carcinogenic PAll's do have bay—region(s), a few
PAll's devoid of bay—regions still induce cancer, presumably by a different
metabolic mechanism. Two examples are the moderate carcinogens presented in
Fig. 5 (Ref. 28).

Fig. 5. Two moderate carcinogenic PAR's having no bay—region.

(3) Progress in theoretical research is hampered by the difficulty facing
quantitative structure—activity relationships (QSAR) in this area of carcirAo—
genic activity. The difficulty consists less in converting the structure of
PAR into parameters which may be used in correlations, but more in the carci-
nogenic activity data. The older data like the Iball index (Refe. 29, 30)

c - oo % tumors• • —
days of latent period

have the advantage that they are numerical parameters with a contixvous varia-
tion leading to facile correlations (Ref. 31), but in 1935—1940 when they were
obtained the lots of animals were small and the genetic strains uncertain.
Today's data, on the other hand (Ref. 28), are free from the above drawbacks,
but are presented in discrete, discontinuoua steps (e. g., inactive, disputed,
moderately, and highly active), and this puts severe limitations on QSAR,
leading to very approximate correlations (ref. 32).

Obviously, this is a serious and highly rewarding challenge which could profit
enormously from international co—operation, possibly also involving WHO and
UNESCO support the PAll's are the oldest documented chemical carcinogens,
their mode of action has recently become better understood, they probably
represent one of the most aggressive noxious agents in •the present—day envi-
ronment, and yet their quantitative carcinogenic activity is so poorly defined
and reported in the literature as to make meaningful QSAR almost impossible.

METALLIC COMPLEXES OF POLY—AZA—KEKULENES

The brilliant synthesis of the first authenticated coronafusene, kekulene, by
Staab and co—workers (Ref. 33) opens a new vista in the study of PAR's, These
authors established from proton. NMR spectra that the structure ought to be
represented by the first rather than the second formula in Fig, 6, because
there is no abnormal shielding of inner protons, as it would result if 'the
latter formula were the correct structure, with two concentric annulene rings
bridged by single bonds. The bond lengths also indicate that the former for-
mula is the correct representation for kekulene (Ref s. 33, 34), and nuggest
that the third formula, patterned after Clar's ideas, is also a suitable
representation. Since the dualist graph of kekulene is a single ring of 12
vertices, this PAR belongs to the special class of coronafusenes termed
corannulenes (Ref. 5). Though discussed for a long time (Ref s. 5, 8, 35, 36),
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coronafusene$ have posed a difficult synthetic problem. A corannulene with ten
benzenoid rings was clainied to have been prepared in 1965 (ref. 37), but this
claim is disputed (Refs. 33, 34).

fI6f:1
XoT 101I Ii]
Tol XoT

Fig. 6. Kekulene formulas (only the first and last ones are correct).

The kekulene framework offers considerable promise for exciting chemistry of
metallic complexes having as chelating ligand a kekulene molecule in which all
or part of the inner CH groups are replaced by nitrogen heteroatoms. We will
only concentrate on the tn—, tetra—, penta—, and hexa—aza—kekulenes.

From the three possible isomeric tniaza—kekulenes, the most interesting is the
symmetrical one leading to trigonal coordination in the equatorial plane. The
metals suitable for such coordination are those prone to forming trigonal—bi—
pyramidal complexes, e. g. bismuth, leaving two free apical positions for
other ligands, similarly to the coordination of iron with porphyrin ligands.

More interesting is the reactangular coordination offered by one of the three
possible tetra—aza—kekulenes. Owing to the larger "hole" of polyazakekulenes
than of porphyrins, not only iron , but also heavier transition metals from
the eighth and other groups of the Periodic Table ought to coordinate. It will
be interesting to test the difference between square coordination as with por—
phyrins, and the less symmetrical tetragonal coordination of the three tetra-
aza—kekulene s.

Penta—aza—kekulene ought to lead to a distorted pentagonal—bipyramidal coordi-
nation with heavy transition metals.

Finally, hexa—aza—kekulene is expected to lead to very interesting metallic
complexes with heavy transition metals having d— or f—orbitals, and presenting
octa— or higher coordination. The interest of all these complexes (Fig. 7) is
derived from the fact that the polyaza-kekulene ligands, like porphynins (and
unlike crown ethers or other criptands which are flexible non—planar ligands)
are rigid planar or quasi—planar ligands which enforce a certain hybridization
on the chelated metal atom,leading to fascinating chemical consequences.

A major difference between the porphyrinic and polyaza—kekulene ligands con-
sists in the presence of two ionizable protons in the former, leading to dif-
ferent valence states of coordinated metals. To make the polyaza—kekulene
ligand more similar to porphyrins, one can
(i) convert all, or some of, the pyridine nuclei into 4H—pyridone rings (if
only part of the pynidine rings become pyridones, the symmetry in the ligand

Fig. 7. A triaza—kekulene, a tetraaza—kekulene, and the hexaaza—
kekulene.
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is lost), or —(ii) substitute other hydrogen atoms by —(C112)m_C02 or by _(CH2)m_S03 groups

where m 0, 1, 2, etc., ensuring thereby electrical neutrality of the complex

with metallic cations M. In the absence of any of these two alternatives,
the polyaza—kekulene ligands resemble from the electrical standpoint the
crown ethers or cryptands.

In our laboratory, Extended HUckel calculations (in collaboration with Dr M.
Elian from Bucharest, and Dr. G. Surpàeanu from Jassy, Roumania) have been
delayed owing to the small capacity of our computers, but it is hoped that
these difficulties will be circumvented in the future.

So far, no polyaza—kekulene has been prepared ; this is an exciting synthetic
challenge for organic chemists,

"LOCAL RING CURRENTS" OR "BENZENE CHARACTERS" IN CATAFUSENE SYSTEMS

On the basis of electronic absorption spectra, Clar postulated (Ref. 38) that
aromatic sextets are localized in certain rings of polycyclic benzenoid sys-
tems, and he devised certain rules for knowing when to write circles in these
rings, and when to write double bonds. These qualitative ideas gained a quan-
titative support by means of theoretical calculations initiated by Polanaky
and Derflinger (Ref. 39), and continued by Dewar, Herndon, Randiô, Kruszewski,
Hosoya, Aihara, Gutman, and Bonchev with their co—workers (Ref s. 40-49).Table
5 collects illustrative data for anthracene, showing clearly that, in agree-
ment with Clar's ideas, the marginal rings have a larger resonance energy than
the central ring (only Herndon's and some of Randi6's data lead to the oppo-
site result). If, as will be defined further in more detail, f is the relative
resonance energy of a ring in a PAH versus the benzene resonance energy and if
f3 and f refer to the marginal and central rings in anthracene, respectively,

then the data from Table 5 indicate that f3> f

TABLE 5. Comparison of relative resonance energies for
individual rings in anthracene after various authors.

A u t h o r a Ref. Marginal Centra.l

Polanaky & Derflinger 39 0.893 B 0.840 B

Dewar & De Llano 40 0.277 eV —0.139 eV

Herndon & Ellzey 42 0.600 0.700

Randi 43 0.3655 0.3612

Randi6 44 0.500 0.500

Aihara 45 0.151 B 0.120 B

Gutman & l3osanac 46 0.0951 B 0.0652 B

Aida & Hosoya 47 0.678 B 0.518 13

Randi 48 0.521 eV 0.558 eV

So far, no experimental checking of these ideas has been attempted using

NMR spectra. We have tried to solve this problem by means of proton NMR spec-

tra of N—aryl—2,4,6—trimetKylpyridinium salts. Such salts are readily avail.
able from primary arylaxnines and 2,4,6—trimethylpyrylium perchlorate (which is
easily prepared, Ref. 50, from simple starting materials t—butanol, acetic
anhydride, and perchioric acid) or sulphoacetate (this salt is not explosive
and results by replacing perchioric acid by sulphuric acid, Ref. 51). As indi-
cated earlier (Refs. 1, 52), the ring current in the N—aryl group shields the
six a—standing methyl protons and deshields the three (—standing methyl pro-
tons. The difference in chemical shift is a measure of the ring current in the
N—aryl group. We proposed the expressions

D = c5 C f—Me)— cI(u-Me2) and RRC = 200 (D + 0.25)
for the relative ring current (RRC) having N—phen,yl—2,4,6—trimethylpyridinium
perchlorate in trifluoroacetic acid as standard with RRC = 100. The expression
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for RRC is valid for five— and six—menbered aromatic or heterocyclic groups
having no ortho—subtituents. Then ortho—substituents are present, RRC is
higher in some cases (but there is rio regular trend), probably owing to varia-
tions in the time—averaged dihedral angle between the pyridiniunA and N—aryl
rings (Ref. 53).

A more detailed insight on the shielding and deshielding effects is provided
by the differences between corresponding proton chemical shifts of N—aryl and
N—methyl derivatives of these 2,4,6—trimethylpyridiniuxn salts. Since the dif-
ference of chemical shifts betweer and ( methyl protons in 1,2,4,6—tetra—
methyipyridiniuia perchlorate is 2.82 — 2.58 0.24 ppm, it is evident that the
difference D' between the relative (&shieldings when both are calculated with
1,2,4,6—tetrsmethylpyridinium as standard will be D' = D + 0.24

Table 6 presents the experimental results when the N—aryl group is phenyl,
naphthyl or anthryl in N-aryl—2,4,6—trimethylpyrodonium salts obtained from
2,4,6—trimethylpyrylium perchiorate and all possible monoarylamines derived
from benzene, naphthaiene and anthracene (Ref. 53).

TABLE 6. Experimental and calculated 111—NMR (de)shielding of a(f)—me-
thyl protons in N—acenyl—2,4,6-trimethylpyridinium perchiorates rela-
tively to 1,2,4,6—tetramethylpyridinium perchiorate (solutions in
trifluoroacetic acid at room temperature, all values in ppm).

N_ArylLPemt_determinations
substi— Chemical Relative
tuent shifts, (de)shieldings

a—Me f-Me a-Me f-Me D'

C a 1 c u I a t e d v a I ues
Data from Ref. 54
Johuson—Bovey
a-Me f-Me D'

Data froa Ref. 55
flaigh—Mailiori
a-Me (Me* D'

Ph

2—Naph

2—Anth

1—Naph
1—Arith

9—Anth

Me

2.48 2.73

2.54 2.78

2.55 2.73

2.43 2.86

2.40 2.80

2.29 2.97

2.82 2.58

0.34 —0.15 0.49
0.28 —0.20 0.48

0.27 —0.15 0.42

0.39 —0.28 0.67
0.42 —0.22 0.64

0.53 —0.39 0.92

0,00 0.00 0.00

0.37 —0.09 0.46

0.35 —0.11 0.46

0.35 —0.11 0.46

0.45 —0.15 0.60

0.41 —0.19 0.60

0.53 —0.21 0.74

— — —

0,15 —0.03 0,18

0.14 —0.03 0.17

0.13 —0.03 0.16

0.18 —0.04 0.22

0.17 —0.04 0.21

0,21 —0.05 0.26

— — —

3*

Approximate va1tes.

Assuming for the moment equal ring currents in all rings of the N-acenyl group
and assuming that these ring currents are the same as in an N-phenyl group, we
calculated (de)shielding effects for a— and '—rnethyl protons at various dihe-
dral angles between the pyridiniwn and aryl rings, using both the data of
Johnson and Bovey (Ref. 54), and the newer revised data of Haigh and Mallion
(Ref. 55). Table 6 presents the results for 90°, considering the C—Nt
inter—ring bond distance as being approximately equal to the benzerie C—C
bond distance. This latter bond distance is the unit for the z and p parame—
ters used in these calculations (Refs, 54,55). Since the methyl groups are
supposed to be freely rotating, the position of the protoni is taken at the
intersection of the plane determined by the three methyl protons with the line
continuing the C(ring)—C(methyl) bond, as seen in Fig. 8.

It will be observed that a—methyl protons may be shielded or deshielded by the
N—aryl ring, whereas the (—methyl group, which is always in the plane of the
N—aryl ring, will be always deshielded. These (de)shielding values were deter-
mined from z and o parameters measured with Dreiding models, Fig, 8 presents
the principle defining the z and p parameters. In Table 7 we exemplify these
calculations using the Johnson—Bovey data ; in these cases, the (de)shielding
values were determined graphically, therefore the precision is low. However,
for distances between the benzene ring and the (de)shielded proton(s) which
are not too large (in our case this means for effects on a—methyl protons),
the Haigh—Mallion data, in tabular form, are much more accurate ; in the case
of (—methyl protons, on the other hand, the distances are so large that the
Haigh—Mallion tables must be converted into graphical form and extrapolated
leading to less precise values in Table 6, as indicated by the appended foot-
note to that Table.
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TABLE 7. Data for (de)shieidirig, in ppm, caused by individual
benzenoid rings of N—ary12,4,6—trimethyipyridinium salts after
Johnson and Bovey, assuming orthogonal rings ( 9Q0)

N-Ary1 ring
Parameters* (De)shielding (in ppm)
z p a-Me '-Me

Phenyl

Additional ring of 2—naphthyl

Additional ring of 2—anthryl

Additional ring of 1—naphthyl

Additional ring of 1-anthryl

2.2 1.8

2.2 3.4

2.2 5.1

2.2 2.5

2.2 3.8

0.37 —0.09

—002 —0.02

—0.01 —0.01

0.08 -0.06

—0.04 —0.04

* in units equal to the C—C bond distance of benzene.
**The additional ring is relative to the N—phenyl, excepting for the

1—anthryl group which is considered in addition to naphthalene.
The 9—anthryl group is calculated as having two additional rings of
1—naphthyi groups.

For the a—methyl protons,
asurning orthogonal pyridinium
and N—aryl rings, the parameters
z and p are defined as follows

Shielding by the N—phenyl ring,
z = XY ; p =YW

Shielding by the additional
1-naphthyl ring,
Z = XY ; p = YZ

All lengths in units equal to the benzene C—C bond length.

Fig. 8. Definitions of (de)shielding parameters for N-aryl—
2,4,6—trimethylpyridinium salts. It may be seen that for a
i—methyl group, z = 0 irrespective of the dihedral angle .

We will now show how one can calculate, in principle, "local ring currents" or
"benzene characters" of PAll's from our NMR data. Let the local ring currents
in successive rings, starting from the margin of a non—branched symmetrical
catafusene, e. g. an acene with n rings, be denoted by n' f , etc. (re-

lative to the ring current of benzene). Then, if the (de)shielding due to the
global ring current is g , we have (based on the Johnson—Bovey data from
Table 6)

System N—Aryl Shielding of a- (2 and 6—)methyl protons

Phenyl 0.34 = 0.37 f1

2 f 2—Naphthyl 0.28 = 0.37 f2 — 0.02 f2 +

1—Naphthyl 0.53 = 0.37 f2 + 0.08 f2 +

2—Anthryl 0.27 = 0.37 f3
— 0.02 f — 0.01 f3 + g3

3 1—Anthryl 0.39 = 0.37 f3 + 0.09 f 0.04 f3 +

L 9—Anthryl 0.42 = 0.37 f3 + o.o8 f + 0.08 f! +

Similar systems of equations could be written also for the deshielding of

— (4—)methyl protons. In the above equations, g2 and g are related to one
another by geometrical data referring to the relative positions of the centres
of naphthyl circuits, and similarly g3, g and g only constitute one unknown

because one can calculate geometrically the relative positions of the ceotres
of anthryl circuits substituted in 1, 2, or 9, with respect to the a—methyl
group. We thus obtain system 1 of one equation with one unknown (the actual
value of f1 should be found equal to 1.00, but the difference is small), sys-

tem 2 of two equations with two unknowns (f2 and the global ring current g2,g

the two latter parameters being interrelated geometrically), and system 3 of
three equations with three unknowns (f3 , f and the global ring current in
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anthracerie, by interrelating eometrica11y g , g' and " according to the sub—
stitution patterns, 2 (is), 1 (a) and 9 (mesoL rspectie1y. Such calculations
are in progress and will be reported later

From X—ray diffraction of single crystals of N—phenyl—2,4,6—trimethylpyridi—
nium perchiorate (Ref. 56), it is known that in the crystal the dihedral angle
is 85° and that the C—Nt bond distance is 1.46 L However, in solution, the
dihedral angle (and probably also the C—Nt bond distance) may differ, as indi-
cated by the effect on D and D' of certain ortho-substituents such as methyl
(Refs. 52, 53). An indication that the C—Nt bonds are appreciably shorter than
c—c bonds is provided by the higher rotation barriers exhibited by N—isopro—
pylpyridinium salts relative to C—isopropylpyridines or C—isopropylpyridinium
salts (Ref. 57).

If the calculated data had been larger than the experimental ones, then one
could have computed local ring currents in the anthryl group neglecting (in
the first approximation) the global ring current. However, the highest calcu-
lated (de)shielding effects (namely assuming orthogonal rings and local ring
currents equal to those of benzene in Tables 6 and 7, but not in the systems
1—3 of eqtiations) are lower than, or equal to, the experimentally determined.
values, as shown by Table 6. The more accurate Haigh—Mallion data lead to much
lower calculated values than the experimental values. Therefore one has to
assume that in addition to local ring currents the (de)shieiding is also due
to a ring current over the whole acenyl group ; this global ring current seems
to be much higher (at least with the Haigh—Mallion data) than the local ring
currents. Owing to the other unknown parameters (dihedral angle and the C_N+
bond angle, two connected data which are known in the crystal but not in solu-
tion), the computation of local ring currents in the N—anthryl group is bound
to be rather approximate. For a more precise calculation of such local ring
currents, the calculated (de)shieldings exterted by a phenyl group should be
known with a higher accuracy and over a wider range of interatomic distances
than that afforded by the Johnson—Bovey or even the Haigh-Mallion data.

Of course, in the context of the present symposium, one must bear in mind that
ring currents, conjugation energies, and aromaticity, are correlated notions
but their magnitudes need not be proportional (Ref. 58).

To conclude this S tion, I would like to mention interesting observations
concerning the Aromatic Solvent Induced Shifts (ASIS) in the proton NMR
spectra of N-anthryl-2,4,6--trimethylpyridiniuxn perchlorates.To weighed amounts
of the three isomeric perchlorates mentioned above (in trifluoroacetic acid at
room temperature, in 5 mm outer diameter NL vials), progressively larger
amounts of hexadeuterobenzene were added. A reiarkable behaviour was noted
for the chemical shifts of a— and '(—methyl protons for the 2—anthryl—,
1—anthryl—, and 9—anthryl—group, respectively, the ASIS values are the follow-
ing, on increasing the hexadeuterobenzene concentration till the asymptotic
limit is reached in a solvent mixture containing the minimal amount of tn—
fluoroacetic acid to keep the salt in solution ; in all cases the aromatic
solvent causes upfield shifts. All data in Table 8 are expresBed in Hz, and
the N1.R instrument was an A—60A Varian instrument.

TABLE 8. ASIS Data f or N—anthryl-2,4,6--trimethylpyridiniwn
perchiorate in trifluoroacetic acid hexadeuterobenzene
on increasing from zero to the limiting value the concentration
of hexadeuterobenzene (all data in Hz with a 60 MHz instrument)

N Ar 1"
Chemical shift difference (f—a)

From To Diff.
tJpfield chemical shifts
f—Me a—Me

2—Anth

1—Anth

9Anth

12 21.5 9.5

24 35.0 11.0

41 53.5 12.5

28.5 40.5

30.5 42.0

30.0 45.0

It is apparent from Table 8 that the ASIS (Ref. 59) operates more strongly in

the 9—anthryl derivative (the 1H—NMR shielding of a—methyl groups due to the
deuterobenzene molecules crowding around the 9—anthryl group which is closest
to the a—methyl groups is therefore the strongest), and less strongly in the
2-anthryl derivative, with the anthryl group pointing away from the a-methyl
groups. The 1—anthryl derivative occupies an intermediate position for ASIS
effects. The three N—anthryl derivatives are illustrated in Fig. 9.
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1-Anth CH3 9-Anth CH3

11+ I
CH H C'N"CH

Fig. 9. The three isomeric N-anthryl—2,4,6—trixnethyl—
pyridinium salts.

TO CLASSES OF DIRADICALS WITH POLYHEX SKELETONS

In the following discussion, unless otherwise stated, we shall deal only with
pen—condensed polyhexes (PAll's) having no side—chains. According to the
Coulson—Rushbrooke starring procedure, all carbon atoms of these alternant PAll
(bipartite graphs) belong either to the starred, more numerous, set, or to the
unstarred set, so that no atom (vertex) of one set is adjacent to an atom of
the same set (Refa, 19, 60). All systems to2be discussed in this Section will
be supposed to be exclusively composed of ap—hybnidized carbon atoms, so that
pi—electrons will not be explicitly shown. Some caution is necessary, because
some of the following graphs will be constitutional hydrogen—depleted graphs
with vertices symbolizing carbon atoms and edges symbolizing covalent bonds,
while other graphs will be dualist graphs with other meanings of vertices and
edges.

It is easy to recognize free radicals such as monoradicais, triradicals, and
in general (2k÷1)—radicals. All these odd—alternant systems have an odd number
of carbons, and hence the number of starred atoms is higher than that on non—
starred atoms. The number a of spins equals the difference between the cardi-
nals of the two sets of atoms, as seen in Fig. 10.

s=7—6=1—0= s=1O—9=2—1=

Fig. 10. Monoradicals or polyradicals (s—radicals) with
odd a = 2k + 1.

The even—alternant systems, on the other hand, may be normal systems (possess-
ing at least one Kekulê structure) or 2k—radicals (diradicals, tetraradicals,
etc.). If the two sets of starred and non—starred atoms have different cardi-
nals, their difference again equals the number a of spins, as seen in Fig. 11.

8=12—10=3—1=2 s=13—11=2—0=2

Fig. 11. Normal compounds (a = 0) or diradicals with even a = 2k.

We call this type of diradicals D—diradicals because the two cardinals are
Different. It is easy to demonstrate that such D—diradicals cannot have a
Kekulê structure, or in graph—theoretical terms that such graphs do not have
a decomposition into 1—factors, or a dimer covering imagine that a pi—bond

H3C H3C

$ = 18—15 = 6—3 =
=3

a = 12—12 = 1—1 = 0
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(correBponding to a 1—factor, or a dimer, 1. e. a simple graph consisting of
two vertices joined by one edge) has differently coloured endpoints ; if
these are the colours of the two sets, it resultB that no Kekulé structure is
possible in this caoe.

If, on the other hand, the numbers of starred and non—starred atoms are equal,
the compound may be normal or may be a 2k-radical. Me call such diradicals
S-diradicals because they have the Same cardinaiB of the two sets. Examples of
such Sdiradicals will be presented and discuBBed in this Section at length
for structures derived from polyhexes. Here we wish to mention that normal
(cloBed—shell) compounds, and polyradicals or open-shell structures (both
Dmonoradicals or Ddiradicalo, and S—diradicals) alBo exist in the case of
acyclic compounds or cyclic compounds with side—chains, as seen in Fig. 12.

Normal compounds D—Mono—

£::II:II:::

radical

D.-Diradicals
s=1 s=2

Fig. 12. Examples of normal compounds or polyradicals with side—chains.

Returning to structures based on polyhexes, we shall re2ent in the following
a simple method for determining
(i) the number of spins in (2k+1)—poiyradicals or D—2k.-radicals with PAIl
structures
(ii) the difference between the cardinals of the two sets for any PAIl, on the
basis of the dualist graph, without counting the carbon atoms (Ref. 61) ; and
(iii) the difference between a normi, closed—shell PAH with at least one
Kekul structure, and an 5—2k—polyradical, although both these polyhexes have
the same a = 0 difference between the two cardinals (therefore this difference
a, defined on the basis of the cardinals of the starred and non—starred sets,
is not always equal to the number of spins).
Examination of the first and third isomeric structures from Fig. 11, which
represent a normal closed—shell compound (zethrene) and a D—diradical, respec-
tively, shows an interesting difference, which may be generalized in the
D—diradical, both vertices of the constitutional graph which are situated at
the centres of the three—membered rings of the dualist graphs belong to the
same set (starred vertices, depicted as black dots), while in the closed—shell
(normal) compound they belong to different sets (one starred, one non—starred
vertex). No must draw the attention of the reader that unlike previous Sec-
tions, here the heavy dots will no longer symbolize vertices of the dualist
graphs, but atoms belonging to the starred set.

The dualist graph of a plane "honeycomb" graphite lattice (of which any poly—
hex is a subgraph) is a triangulated plane. Fig. 13 presents a portion of this
plane with the two graphs. Note that we adopt the convention that we draw the
benzenoid rings so that some C—C bonds appear vertically, and no C—C bond is
horizontal. In this case, the dualist graph (triangulated plane) necessarily
has horizontal lines. Considering only the triangulated plane, it may be seen
that six triangles meet at each point, three of which have a starred centre
and the remaining three an unstarred centre. The situation is represented more
clearly by the second drawing in Fig. 13 which no longer shows the honeycomb
lattice corresponding to the constitutional graph, but only the triangulated
plane, i. e. the dualist graph ; in this drawing, the starred— and non—star-
red—centre triangles are drawn in black and white, respectively, as if the
star had filled the whole triangle. The result is a triangulated chessboard.

Fig. 13.The starred honeycomb lattice and its dualist graph
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An essential observation is that for the adopted orientation wherein all tn—
angles have a horizontal aide, the black triangles always point upwards, and
the white triangles always point downwards. Thus there exist only two species
of triangles (starred or non—starred in their centres which is time—consuming
to establish, or black and white, i. e. upward or downward pointing, which is
visible at a glance).

If one colours accordingly the properly—oriented triangles of the dualist
graph of any penihex it is easy to calculate a as the difference between the
number of black (or centre—starred) and the number of white (centre—non—star--.
red) triangles. Figures 11 and 12 prove that s is the same as from the the
classical Coulson—Rushbrooke starring approach. It is also seen, however, that
the present procedure is much simpler because the dualist graph has a much
lower number of triangles than the vertices of the constitutional graph, so
that in the present procedure s results as the difference between two small
numbers which may be determined by visual inspection while in the classical
procedure a resulted as the difference between two large numbers which had to
be determined with pencil and paper so that mistakes could occur more fre-
quently for large structures.

Returning now to the last problem (iii) mentioned in the introduction to this
Section, n3mely to discriminate between normal (closed—shell) structures,
D—diradicals, and 5—diradicals (or —polyradicals with even numbers of spins),
the procedure just mentioned distinguishes easily between D—2k--radicais with
non—zero s values (a 2k), on one hand, and between systems with a = 0 which
may be either normal systems or S—2k—radicals, Fig. 14 presents examples of
all three types of structures. For simplicity, only the dualist graphs are
shown, and since the numbers of triangles is quite small, they are not colou-
red in black and white (this may be done mentally looking at the upward— and
downward—pointing triangles, respectively).

yy

A\\A-.A

Fig. 14. Further examples (see also Fig. 11) of normal and
D—diradicalic PAIl structures (presented here as their dualist
graphs), continuing on next page with normal, D—, and S—diradicals

A,J\

VA

Normal D—Diradicals Normal D—Diradicals
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S—Di radicals

Fig. 14 (continued). Examples of normal polyhexes with s = 0, of
D—diradicals with s = 2, and of 3—2k—radicals with s 0.

Independently, Gutman (Ref. 62) and Mallion (Ref. 63) observed that there
exist both normal (closed—shell) PAH structures and open—shel.l (triplet) di-
radicals having equal numbers of starred and non—starred carbon atoms, i. e.
s = 0. Gutroan and Mallion both found the first 5—diradical from Fig. 14, and
Gutman also found the second 5—diradical from the same figure. The remaining
3—polyradicals from Fig. 14 are displayed for the first time. This means that
s = 0 is a necessary but insufficient condition for a PAll to be normal one
it can also be a 2k—radical for which no Kekulê structure can be written. All
such 2k—radicals (belonging to the class we call 5.-2k—radicals) so far known
have a central perylene structure, as evident from Pig. 14.

A general rule allowing to discriminate polyhex 5—diradicals from normal com-
pounds is the following

dualist graphs of 5—diradicals are formed from two dualist graphs
of D—diradicals by "fusion" of a vertex ; since this common vertex
is an apex of a triangle, this means that the two D—diradicals
share a common benzenoid ring, and this explains why a central
perylene system occurs in all 5—diradicals.

This rule can be easily generalized to 5—2k—radicals formed from two D-.2k.ra-.
dicals sharing a vertex at the apex of a triangle. Of course, to yield an
5—diradical when two D—diradicals become thus fused, the orientations of tri-
angles in dualist graphs are opposite so that the numbers of black and white
triangles become equal, hence s 0. It is easy to see that by breaking the
5—2k—radicals from Fig. 14 into two fragments at the central junction of the
perylene moiety, two D—2k—radicals result in all cases.

Normal

XA
A7\A

VXV

A®A
D—DiraclicaisD—Diradicals

v vv
Normal

vyAA

5-Diradical 5—Tetraradical



This rule allows the conetruetion of nwnerous actually of an unlimited
number of 3—2k—radicals, as indicated in Fig 15. The same Fig. 15 also shows
that this rule is not limited to 5—2k—radicals with polyhex structure : by
fusion (sharing) of a C-C bond, two acyclic D-diradicals like trimethylerie—
methane form analogously acyclic Z—diradicals (for clarity, in this case the
starred atoms are shown by black dots) ; the resulted tetramethylene—ethene
has equal numbers of starred and non—starred atoms, and is therefore an
acyclic 5—diradical. indeed, this structure is included among other diradicals
in a paper by Herndon and Eilzey Jr. (Ref. 64). Both D—diradical .. a and S—dira-
dicals share the properties that they possess two singly—occupied non—bonding
levels and that their formulas do not admit deompositioris into 1—factors, or
what is the same thing, they have no Kekul structures.

According to the procedure described by Herndon (Ref. 65), it is easy to
recognize the presence of non—bonding levels in all these structures, excizthg
chains and/or rings of known closed—shell stable structures from the periphery
towards the centre. Fig. 16 shows excisions of naphthalene structures by mdi-
cating the sectioned C—C bonds in dashed lines. The remaining dimethylene—pe—
rylenes are evidently diradicals. Similarly, excizing from the first 3—dira—
dical from Fig. 14 two arithracene structures (the top and bottom rows of
benzenoid rings), one obtains 1,2,4,5—tetramethyienebenzene which is a dira—
dical. On excizing from the S—tetraradical in Fig. 14 similarly two tetracene
structures, one obtains a tetramethylene—perylene, i, e a tetraradical, etc.

)'
Constitutional graphs

or X

D—Diradicals whose A new D—Diradicals whose 5—Diradicals
pairwise combination Sdiradical pairwise combination
gives all 5—diradicais (sharing of an edge)
from Fig. 14. gives S-diradicals

Fig. 15, Construction of 5—diradicals from two D—diradicals if
the D—diradica.is are polyhexes, they share a benenoid ring ; if
they are acyclic, they share a C—C bond.

By means of graph—theoretical matrices it is also possible to determine whe-
ther a given graph has, or does not have, a KekulC structure (a decomposition
into 1—factors, or a dimer covering). For PAH's the Kekulê structure count SC
and the corrected structure count are identical and they are given by

SC = det A 1/2 = det B
where A is the symmetrical adjacency matrix, and B is the non—symmetrical

matrix in the form expressed by Ham (Ref.66), having vertices of the starred
set as row headings, and vertices of the non—starred set as column headings
entries in both matrices a 1 for adjacent vertices and 0 for non—adjacent ver-
tices. Since for (2k+1)—radicals and for D—2k—radicals the numbers of rows and
columns are different in the B—matrices, the corresponding determinants have
value zero. For discriminating between normal structures and 3-2k—radicals,
one has to solve the determinants of the A— or B—matrices, a much more tedious
procedure than that described here.

Fig. 16. Demonstration by
excizing two naphthalene
subgraphs from 3—diradicals
(whose dualist graphs are the third and sixth in Fig. 14) that these
structures have two unpaired spins (dimethylenepyreres are left).

Benzenoid polycyclics and related systems 1093
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Procedure for distiuishing normal structures from D— or S—rad.icals

Definitions.(Refs. 67, 68). A cut—point (cut—vertex, articulation point, sepa-
rating point) of a graph is a vertex whose removal increases the number of the
graph components. A cut—edg (isthmus, bridge, separating edge) of a graph is
an edge (a line) whose removal also increases the number of the graph compo-
nents. In particular, the deletion of a cut—point or a cut—edge of a connected
graph produces a disconnected graph. In Fig. 17 the black vertex is a cut—
point and the heavy line is a cut—edge.

Constitutional graphs with cut—edges

2
Fig. 17. Cut—disconnections of S—(2k)—radicals.

APPENDIX

Dualist graph with cut—point

\e/±AØA
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The process whereby two components of a connected graph become disjoint at a
cut—point or a cut—edge, each component retaining a vertex or an edge, res-
pectively, in the place of the original cut—point or cut—edge, respectively,
will be called cut—disconnection.

A dualist graph with 2m + 1 vertices affords on cut—disconnection two dualist
graphs with 2k and 2(m k + 1) vertices, respectively, A constitutional graph
with in edges is cut—disconnected into two constitutional graphs with k, and
in — k + 1 edges, respectively (it should be remembered that vertices of dual-
ist graphs symbolize centres of benzenoid rings, while vertices of constitu-
tional graphs symbolize atoms, and edges of constitutional graphs symbolize
covalent bonds). Cut—disconnections are illustrated by Fig. 17.

Procedure. For skeletons of alternant, continuously—conjugated, sp2hybridized
compounds, the flowchart below illustrates the method for discriminating
normal graphs (which have at least one Kekul structure, i. e. one decoinpo—
sition into 1—factors) from various types of radicals odd—alternant radicals
which belong always to class D, and even—aiternant radicals which may belong
either to the D— or to the S—classes, in the latter case, the algorithm uses
the operation of cut—disconnection. To simplify the flowchart , we have not
included a loop for the decision if the components after this cut—disconnec-
tion are, or are not, everk—alternarlt D—(2k)—radicals.

It remains to be seen if no counter—example to this procedure will be found.

Fig. 18.
Plowehart

Graph whose vertices dertot

1brjdized atoms

No




