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Abstract — In semiconductor technolor silicon is widely used as a
starting material for the production of a great number of devices
ranging from complicated integrated circuits to cheap solar cells.
In this technology the chemical vapour deposition (CVD) of silicon
plays the important role of providing the thin silicon layer in
which the active devices are formed. In the growth of silicon from
the vapour phase the main methods used are the hydrogen reduction
of silicon halides such as SiCli or SiHC13, or the decomposition
of SiH). Various resistances are present to limit the growth rate,
such as gas phase diffusion of reactants towards the interface and
the surface reactions needed to arrive at the desired crystal struc—
ture. This paper deals with the nucleation of silicon, with models
for high- and low temperature growth reactions and with the nor-
pholog of the resulting layers and the conditions are discussed

under which monocrystalline, polycrystalline or amorphous layers
can be expected.

INQDJJ?TTON

Since the discovery of the transistor by Bardeen and Brattain (Refs.1 and 2) it has been
realized that the development of useful semiconductor devices depends on the properties of
the materials used. In the hectic developments that took place in the early years of the
semiconductor industry it was silicon that emerged as the most versatile semiconductor ma—
terial. This became evident when it proved possible to turn the apparent drawback of the
easy oxidation of silicon into an advantage. It was discovered that windows in an oxide
layer on silicon may be used to define regions where diffusion of dopants or the growth of
localized islands can take place (Ref.2). The oxide now serves as an effective mask. Photo—

lithographic techniques provide the very high precision of position and size of regions
where windows in the oxide can be opened by the etching of hydrofluoric acid, which attacks
the oxide but not the silicon itself. Details smaller than 2 pm are common in this technique.
To achieve reproducible doping with n— or p—type dopants the purity of the starting material
has to be very high. Metallurgical grade silicon is produced in large quantities from coal
and sand. Semiconductor devices, however, require a concentration of the electrically ac-
tive elements in the ppb level (io9 or 5.1O' at/cm3). The main purification is based upon
fractional distillation of silicon chlorides, followed by a chemical vapour deposition of
pure silicon on a heated silicon rod to give polycrystalline bars of more than 20 cm dia-
meter and 1 m length. This material is melted and single crystals of silicon are grown from
the high purity melt, and a homogeneous doping is achieved in the sane operation by adding
known amounts of dopant to the melt. Slices are then cut from the crystals and, after po-
lishing, these are used as substrates in device fabrication. During the processing and the
diffusions care has to be taken to preserve the crystalline quality of the material. Im-
perfections such as precipitates and dislocations may seriously degrade the characteristics
of the final devices. In this application the quality of the material is of prime impor-
tance, and material costs constitute only a fraction of the total end price of the finished
device. In.;sharp contrast to this is a new, possibly large—scale, use of silicon, to meet
the need for efficient and cheap solar cells for the terrestial conversion of solar energy
into electricity. The solar cells produced for space vehicles have a very high efficiency,
but the price of the cells and the amount of energy needed to produce them are up to a
hundred times higher than is allowable in order to be competitive with other sources. This
had led to a great deal of activity aimed at finding the principles and the means of pro—
ducing cells of acceptable efficiency in a way suited to mass production with a minimum of
material and energy costs. The situation here can be compared with the early years of the
semiconductor industry where every year new ideas and technologies outdated the former ones.
It took nearly twenty years to arrive at a more or less stable and accepted technology where
new inventions can be incorporated more by adding to existing ideas and equipment than by
totally changing them. In both applications, the integrated circuit and the solar cell,
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the ihemica.l vapour deposition of silicon plays an important role, because most devices can
be made in a thin layer of material such as is obtainable from vapour deposition.

CHEMICAL VAPOUR DEPOSITION (CVD) OF SILICON

CVD is a technique to deposit solid material in which achemical reaction produces the solid
from gaseous reactants. In the following sections some aspects and results of the CVD of
silicon will be presented in order to show the interplay of equilibrium and kinetics in the

process.
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Fig.1. Growth rate of silicon as a function of temperature for 0.1%

SiH14 in hydrogen.

The growth rate of silicon for a fixed partial pressure of silane as a function of substrate
temperature is shown in Fig.1. It is seen that at high temperatures the growth rate shows
a slight temperature dependence characteristic of a gasdiffusion—linited growth rate. At
lower growth temperatures, however, the growth rate has a much higher temperature dependence
(with an apparent activation enerr 35 kcal/mole), A new rate-limiting factor appears which
points to a surface reaction becoming the slowest step in the chain of events. The growth
of monocrystalline silicon on a single crystalline substrate (epitaxial growth of silicon
on silicon or sapphire) requires a relatively high temperature ( 1000°C region 1 in fig.1).
A type of apparatus suited to grow such layers is shown in Fig.2.
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}ig,2. Horizontal epitaxial apparatus used in the high temperature CVD
of silicon (cold wall apparatus).
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A graphite susceptor inside a water—cooled quartz tube is heated by means of an RF coil
around the tube. The substrates to be covered are placed on top of the susceptor. Hydrogen
is the usual carrier gas, loaded with a small concentration of silane (SiH)) or a silicon
halide. In the gas phase adjacent to the substrates a steep temperature gradient is present,
causing the formation of a boundary layer in the gas just above the substrates (Ref.3).
Diffusion of reactant through this layer is therefore one of the limitations to the growth
rate of the heterogeneous reaction. rpical growth rates are of the order of 1 m per minute.
At lower growth temperatures (region 2 in fig.1) another type of reactor can be used in
which a higher stacking density of substrates becomes possible (Fig.3).

Furnacei —SiIica tube

Si s/ices

Fig.3, Hot wall reactor for the deposition of polycrystalline silicon,
silicon oxide or silicon nitride. The packing density of slices is high.

Fig.3 is a schematic representation of a hot wall apparatus in which all substrates can be
covered homogeneously because of the low surface reaction rate of the growth process. It is
thus not only the first slice in the direction of the gas flow that begins to grow. This
type of low temperature reactor in combination with a total pressure in the order of 1 Torr
is becoming popular in the production of polycrystalline silicon, silicon oxide and silicon
nitride layers on various substrates (Ref.)-). The low temperature with the inherent low sur-
face mobility of silicon ad—atoms makes it difficult to grow monocrystalline layers, as
will be discussed in a later section.

Temperature dependence of growth rate
A typical difference has been found between the growth rate of silicon at high and low ope-
rating temperatures, as shown in Fig.1 and is explained by a diffusion-limited process at
the high temperature side and a surface reaction controlled growth rate at the lower tempe-
ratures. Both steps can be defined in the following way (Ref.5): For a simple heterogeneous
reaction the flux of reactant atoms towards the growing interface can be given as:

J - 1
d RT

6

where D is the diffusion coefficient of reactant in the gas phase, Pb 1S the partial pressure
of that species in the bulk of the gas phase and p5 the partial pressure near the surface,
and 6 is the thickness of the boundary layer in the gas phase. RT is included to convert
gas phase concentrations to partial pressures via the ideal gas law (cp/RT). On the other
hand surface reactions are needed to generate growth. The nature of the surface reactions
is not specified, but it is assumed, that the reaction rate is a linear function of the su-
persaturation and characterized by a mass transfer coefficient kd such that the transfer

flux (st) is given by

(p -p
Jt=kd

eq
(2)

RT

eq denotes the value of the reactant concentration in thermodynamical equilibrium at the
temperature T. In a steady state situation both fluxes have to be equal, so that the par—
tial pressure near the surface (PS) is given by
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kd
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kd6
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Substitution of eq.(3) in eq.(1) or (2) leads to the general expression

- eq
J= — R)

RT( + J_)
d

From eq.(3) it is seen that the term kd6/D plays an important role. When the value of this
parameter is high, equals Peq' when it is low p5 approaches Pb• The first situation is
seen when diffusion control is present, all arriving reactants reach equilibrium as the sin'—
face reaction is fast. At lower temperatures the surface reaction efficiency is low and PS
will be closer to the bulk value, p0. The dimensionless group kdS/D is equialent to the
Nusselt number for mass transfer in an isothermal system. When temperature gradients are
present it is proposed to use the term "CVD number (Ref.5). Thus when the value of the CVD
number is high one may expect diffusion controlled growth, which can best be performed in
a reactor as depicted in Fig.2. At low CVD numbers the reactor shown in Fig.3. enters into
the picture. The temperature dependence of the CVD number is largely determined by the tem-
perature dependence of kd, in the present case about 35 Kcal/Inole. For the description of an
CVD process it is important to have an exact knowledge of the temperature gradients near the
growing interface and the relation between a possible thermal boundary layer and diffusional
boundary layer. It has been shown (Bef.6 and 7) that at high hydrogen gas flow rates there
is a temperature distribution between the hot substrate and the cold reactor wall as shown
in Fig.I. For these higher gas flow rates a thermal boundary can be indicated.
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Fig.)4. Temperature distribution in an epitaxial reactor as shown in Fig.2
(Ref.6 and 7).

The concentration boundary has been studied by Sedgwick (Bef.6), Ban (Ref.7) and Duchemin
(Ref.8) using Raman spectroscopy, mass spectroscopy and gaschromatography respectively. The
concentration gradients found above the substrate in the diffusion—limited growth region are
depicted in Fig.5. The concentration boundary layer is seen to be nearly equal to the ther-
mal boundary layer. These in situ measurements make it possible to calculate the actual
growth rate in a quantitative way (Ref.9) for this diffusion—limited case.
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Fig.5. Concentration gradients near the growing interface indicating a
concentration boundary layer in the diffusion—controlled high temperature
growth (Ref.7 and 8).

At low temperatures it has been shown by Yasuda et al (Ref.1O) and by Duchenin (Ref.8) that
the growth rate (G) for silane as the reactant, can be represented by

G= klpb

2i + (kp)
(5)

where k1/(1 + k2p11212 has to be compared with kd/HT in eqs.(2) and (n). E.(5) indicates
that possibly the adsorption of mono—atomic hydrogen on free sites of the silicon surface
is responsible for the decrease in growth rate by limiting the adsorption and reaction of
reactant tno'lecules on that surface. It in interesting to note that the same activation ener-
gy is found in the kinetic region when SiCl, SiHC13 or SiH2C12 are used as reactants (Fig.6)
indicating that at temperatures below 1000 K the desorption of hydrogen is rate—limiting
in all these cases. The Si—H bond appears to be very strong (Ref.12) as also found in the
recent studies on amorphous silicon (a—Si) (Ref.13). Photovoltaic solar cells can be made
from a—Si, deposited at low temperatures on a cheap substrate. The material is only suited
for the fabrication of solar cells when made in a hydrogen plasma discharge, .which means
that a—Si contains considerable amounts of hydrogen ( 20 atom %) needed to compensate all
dangling silicon bonds in the amorphous structure by the formation of the strong SiH bonds
(Ref.14).

Above susceptor (mm)
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(4

Fig.6. Growth rate as a function of reciprocal temperature for equal con-

centrations (0.1 volume %) of SiH1, SiH2C12, SiHC13 and SiCl in hydrogen
as a carrier gas.

Pressure dependence of growth rate
The dependence of the silicon growth rate on hydrogen partial pressure, as given in eq.5,

already points to a kind of pressure dependence of the growth rate at lower temperatures.
Apart from this, however, the total gas pressure is important in that it influences the
flow dynamics and gas phase transport. In general it can be stated that the gas phase
diffusion constants increase with decreasing total pressure, and that the boundary layer
thickness increases with decreasing total pressure. As approaches the tube radius it
can be treated as being constant, The surface reaction rate will vary with the hydrogen
partial pressure (Eq.5). The combined effect shows that the CVD number kd/D decreases
with decreasing total pressure; this means that at lower pressures the influence of surface

reactions is expected to be more pronounced. Fig.T gives experimental results reported by
Duchemin (Ref.8) showing the influence of the total pressure on the growth rate. It is
clearly seen that the surface reaction rate is rate—determining at the lower total pres-
sures even at higher temperatures. The low pressure and low temperature region (1 torr at
6oo °c) is mainly used for the deposition of tlün polycrystalline layers as needed in
various applications in the semiconductor device technology (e.g. resistors, gates, contact
areas and diffusion sources). (Ref.15L
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Fig.7. Temperature dependence of the silicon growth rate measured at va.
rious total pressures. At lower pressures surrace reaction rate control

is dominant (Ref.8).

Concentration dependence of growth rate

At small input concentrations of reactants the silicon growth rate appears to increase li-
nearly with the input concentration. At higher input partial pressures there is a departure
from linearity, caused by parasitic reactions in the gas phase or secondary reactions at
the solid interface. The first type of reaction has been described by Eversteyn for the
case of silane (SiH4) in hydrogen, where gas phase nucleation leads to a cloud of small
solid silicon particles that deposit on the growing interface (Ref.16). This leads to loss

of the crystalline perfection of the growing layer. In this case homogeneous gas phase
reactions begin to play a role above a certain gas phase concentration of the order of
0.1 volume percent of silane in hydrogen. In the epitaxial apparatus a steep temperature
gradient is present near the growing interface. The critical silane concentration for the
gas phase reaction now has to be compared with the actual silane concentration present in
the boundary layer. The critical concentration decreases exponentially with increasing
temperature, the actual silane concentration shows a linear decrease in the boundary layer
in which the main temperature gradient is present. The situation in depicted in Fig.8,
where it is seen that homogeneous gas phase nucleation can be avoided by a steep temperature
gradient in combination with a low reactant surface concentration (diffusion—limited growth)
and a not too high reactant concentration..It has been shown (Ref. 17) that honogeneous gas
phase decomposition of silane can be prevented by the addition of some HC1 to the gas phase.
Th this ay high growth rates of more than 10 jim/win become possible for a 1:1 mixture of
silane and hydrochloric acid in hydrogen. Gas phase reactions are also less pronounced when
chiorosilanes are used as a reactant (SiH2C12, SiHC13 or SiCli). In these cases, however,
secondary reactions at the interface become important. Apart from silicon and HC1, other
reaction products appear in the chemical equilibrium, SiC12 being the main new reaction
product. An illustratiwe example is SiCl in hydrogen (Ref.18) where the growth rate
shows a maximum as a function of input concentration (Fig.9).
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Fig.8. The actual gas phase concentration of silane in the boundary layer
compared with the critical concentraiion for homogeneous gas phase nuclea-
tion. A low input concentration and a steep temperature gradient prevent
the unwanted nucleation in the gas phase.
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Fig.9. Silicon growth rate as a function of input concentration of SiCl)
in hydrogen. At high concentrations negative growth rates occur (etching
of a silicon substrate) (Ref.18).

Apart from the growth reaction

SiCl + 2112
= Si + )4HC1

the following reaction has to be considered

SiCl + Si =
2SiCl2

(6)

(7)

The latter reaction becomes increasingly important at higher input concentrations of the
reactant (SiCli and higher reaction temperatures, to am extent where even etching of a
silicon substrate (negative growth rate) is found. This behaviour is in accordance with
thermodynamic expectations (Ref.19,20,21). The situation at which G = 0, where etching and
growth are in balance deserves special attention. It appears that the SiClL concentration
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Steps are present when the surface has a slight inclination with respect to a low index crys—
tal plane. The growth rate increases with misorientation as the step density increases (Ref.
26 ) , Nishizawa has shown that it is possible to produce facets with a very low step density.
In that case secondary nucleation of adatoms leads to the formation of three—dimensional
nuclei that grow out to pyramids on the surface (Ref.27). The uninterrupted movement of steps
on the surface is impeded when impurities are present on the surface. It thisc.ase, too , a
secondary nuclea1ion is observed (Ref.25). At lower temperatures the reaction of silicon
compounds and the nucleation of silicon on a solid surface meet with difficulties leading
to polycrystalline growth even on a single crystalline substrate. Such problems are not pre—
sent on a liquid surface.

Nucleation on a liquid surface
The properties of a liquid surface as a substrate for CVD are nicely revealed in the growth
of silicon wIiskers via the VLS (vapour—liquid—solid) process (Ref.28). Fig.13 shows the
situation where a liquid alloy droplet is present on a solid silicon surface together with
silane in the gas phase. The temperature is so low that solid—gas reactions are slow. The
absence of any significant barrier to the reaction of silane on the liquid surface leads to
solution of silicon in the liquid. As soon as supersaturation is reached, growth of silicon
at the solid—liquid interface leads to the formation of a whisker with a liquid droplet on
top. This growth habit can be observed when reaction rates are widely different between the

solid—gas and the solid—liquid systems.

Vapour

Liquid alloy

Fig.13. Priniiple of vapour—liquid-solid (VLS) growth of whiskers via a
liquid alloy on the solid surface (Ref.28).

Another example is found in attempts to produce cheap silicon solar cells on a non—crystal-
line surface (Ref.29). A substrate (e.g. graphite) is coated with a 5 iim thick molten tin

layer, and at about 1000°C silane is introduced via the gas phase. Reaction occurs at the

liquid surface and silicon is dissolved. At a relatively high deposition rate the liquid
will reach supersaturation at the top surface and silicon nuclei are formed that float on
the surface. These nuclei have an additional degree of freedom and rearrange themselves to
form bigger aggregates. The addition of HC1 in the gas phase decreases the number of nuclei,
and each nucleus may mow grow out to useful dimensions (300 irn diameter at 30 urn thickness).
Among the various methods used to Obtain solar grade silicon this VD method is one that
deserves detailed study.

Nucleation on foreigp substrates
The best studied case is the nucleation and growth of silicon on single—crystalline sapphire
and spinel surfaces. Epitaxial growth is observed above 1000°C starting from differently
oriented nuclei (Ref.30). It is shown that upon prolonged growth one type of nucleus over—
grows the others. After about 0.5 urn of silicon growth a singly oriented layer is formed
with a quality suited for the production of devices (Ref.31). Nucleation on amorphous sub-
strates (Si02, Si3N4) leads to random nucleation. The nuclei grow out to give polycrystal—
line silicon. The greatest crystallite size is found at higher temperatures. The addition
of HC1 also helps to increase the crystallite size (Ref.32), in which case columnar growth
is also observed, crystallite sizes do not exceed 10 urn. Small crystallites are often needed
in smooth polycrystallime layers. Nucleation and growth at low temperatures (500°C) then
leads to mirror smooth polysilicon deposits (Ref.15).

Crystal quality versus growth rate
In crystal growth a high growth rate is of economical importance, but there are several
processes that limit the actual rate. Increasing the growth rate may lead to supersaturation
in the gas phase, making it impossible to avoid spurious nucleation. There are several ways
in which homogeneous decomposition cam be reduced and growth rates up to 40 p/thin have been
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reported in the CVD of silicon (Ref.17). Increasing the growth rate also inevitably leads

to a loss of crystalline perfection. F±g.1)4shows experimental regions of monocrystalline
and polycrystalline growth on a inonocrystalline silicon surface. High temperatures and low
supersaturations favour snooth single crystalline growth. An increase in growth rate or a
decrease in growth temperature may lead to disturbances in the single—crystalline growth and

eventually poly—growth is observed.

420°C I I O 075 cOo°c 727°C 653°C 587°C

/min

02

10'

l0'

060 064 068 072 076 0.80 0.84 0.88 0.92 096 .00 .04 .08 1.12 1.16 1.20

T°K

Fig.1. Regions of growth rates and temperature in which monocrystalline,
polycrystalline or amorphous layers are formed on a nonocrystalline sili-
con su:hstrate (Ref.9).

The apparent activation energy of the dividing line shown in Fig. 1)4 is 5 eV (115 Kcal/mole).
This value corresponds to the activation energy for self—diffusion of silicon in silicon and
leads to an explanation in which the factor G/D determines the degree of crystallinity. G is
the growth rate and D the coefficient of self—diffusion in silicon. At high growth rates
misplaced silicon atoms have no possibility of reaching the surface and cannot be eliminated
so that polycrystalline growth results. It is interesting to note a second dividing line at
lower temperatures; where a transition from polycrystalline to amorphous material is found
(Ref.9). Here the factor G/D2 determines the transition in which D2 could represent the sur-
face diffusion coefficient of silicon on silicon. Amorphous material is obtained when silicon
atoms are deposited on a surface site faster than they can diffuse away on the surface. In
such a case only short—range interactions determine the structure. As already mentioned, the
defect—free, monocrystalline material needed for large scale integrated circuits is made at
the high temperature side of Fig. 14, whereas the amorphous material for possible solar cell
applications is made at the extreme low temperature side of the same figure.

CONCLUSION

In a symposium on Chemistry for the Welfare of Mankind several reasons can be given for in-
cluding a paper on silicon technology, in which the chemical vapour deposition of silicon
plays a prominent part. One of the reasons is that the problems of today's world call for
good communications between people. In systems ranging from telecommunication networks to
hearing aids silicon devices help to reduce the size and the energy consumption of the appa-
ratus. They have lent enormous impetus to the dissemination of education, information and
entertainment. A further characteristic of the worlds' problems is the great complexity, and
computers can do much here in helping to solve the difficulties. Large scale and very large
scale integration of functions based on silicon technology will bring the next generation of
computers into sight, and microprocessors will increase the safety and reliability of a large
number of processes and operations. The third point is the promising outlook for the photo—
voltaic conversion of solar energy by silicon solar cells, which can contribute towards
the supply of energy needed for the welfare of mankiud.
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