INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

PHYSICAL CHEMISTRY DIVISION

COMMISSION ON PHYSICOCHEMICAL MEASUREMENTS AND STANDARDS

PHYSICOCHEMICAL MEASUREMENTS: CATALOGUE OF REFERENCE MATERIALS FROM NATIONAL LABORATORIES

(REVISED 1976)

PERGAMON PRESS OXFORD · NEW YORK · PARIS · FRANKFURT

PHYSICAL CHEMISTRY DIVISION

COMMISSION ON PHYSICOCHEMICAL MEASUREMENTS AND STANDARDS†

PHYSICOCHEMICAL MEASUREMENTS: CATALOGUE OF REFERENCE MATERIALS FROM NATIONAL LABORATORIES‡

(Revised 1976)

During the past 50 yr scientific development and world trade have grown faster than at any previous time. Commerce depends upon agreements regarding commodities that are bought and sold. The buyer has certain specifications for his needs, and the seller must satisfy those specifications. The specifications are some sort of comparision with a standard acceptable to both buyer and seller. Without standards, the agreement between user and producer is much more difficult to achieve. Accepted standards have become part of the basic framework of commerce upon which further progress rests.

The machine age and automation are firmly grounded on standardized reference materials and at the XXIV IUPAC Conference in 1967 the Commission on Physicochemical Measurements and Standards decided to collect the information on the availability of reference materials certified for given properties that was published as the "Catalogue of Physicochemical Standard Substances."¹ For inclusion in this catalogue a standard substance was interpreted as one having a certified value of a physical property within a given accuracy that can be applied to the following types of measurements:

- 1. The calibration and standardization of a measuring mechanism.
- 2. The proof of measurement accuracy by a given method.
- 3. The transfer of measured quantities from one place to another.

‡The current version was compiled by J. P. Cali.

4. The comparison of measurements made in different locations.

Revision of the catalogue was agreed at the XXVII Conference in 1973 and for the compilation of this new edition, inquiries were made from representatives of 31 nations known to have been active in the field of reference materials. The new title is a more exact description of the contents; it comprises materials available internationally that are issued or sponsored by a national laboratory and have certified physicochemical properties (chemical composition and engineering and technological properties have been excluded from consideration).

This revision contains reference materials for seven additional properties: magnetic susceptibility, relative humidity, specular spectral reflectance, surface area, surface tension, thermal emissivity, and thermal expansion. Some of the detail originally given has been omitted; e.g. reference materials for the realization of pH have been grouped and not repeated for each issuing laboratory, and only representative pH values have been given at one temperature, usually 20°C. The user is advised to obtain full information about each sample from the laboratory supplying it.

This Catalogue will be complementary to a series of IUPAC reports on "Recommended Reference Materials for the Realization of Physicochemical Properties" which are being prepared by the Commission through its Sub-Commission on Calibration and Test Materials. These reports, some of which have now been published,² are selective but are not restricted to certified reference materials only, as these are not available for all properties and conditions of importance. These reports will include recommendations on methods in addition to numerical values for the properties.

REFERENCES

¹Pure Appl. Chem. **29**, 597 (1972). ²Pure Appl. Chem. **40**, 393 (1974); **48**, 241 (1976).

[†]Chairman: D. Ambrose (UK); Vice-Chairman and Secretary: J. P. Cali (USA); Members: E. Brunner (FRG), R. P. Graham (Canada), J. E. Lane (Australia), Y. Mashiko (Japan), T. Plebanski (Poland), J. Terrien (France); Associate Members: I. Brown (Australia), H. Feuerberg (FRG), A. Juhász (Hungary), H. Kienitz (FRG), G. Milazzo (Italy), W. M. Smit (Netherlands), L. A. K. Staveley (UK), D. R. Stull (USA); National Representatives: M. Matrka (Czechoslovakia), J. N. Mukherjee (India), M. Milone (Italy), A. Newton (UK).

COMMISSION ON PHYSICOCHEMICAL MEASUREMENTS AND STANDARDS

	INDEX TO CONTENTS	
	Property Certified	Page
1.	Acidimetry	506
2.	Calorimetry	
	A. Heat capacity	506
	B. Heat of transition and fusion	506
	C. Heat of combustion	506
	D. Solution calorimetry	507
3.	Spectrophotometry and tristimulus colorimetry	507
4.	Density	508
5.	Dielectric constants (permittivity)	508
6.	Differential thermal analysis	508
7.	Magnetic susceptibility	509
8.	Molar conductance	509
9.	Molecular weight polymers	509
10.	Mössbauer differential chemical shift	510
11.	pH	510
12.	pD	510
13.	Polarimetry-saccharimetry	510
14.	Reductometry-oxidimetry	511
15.	Refractive index	511
16.	Relative humidity	511
17.	Specular spectral reflectance	511
18.	Surface area	511
19.	Surface tension	511
20.	Thermal conductivity	512
21.	Thermal emissivity	512
22.	Thermal expansion	512
23.	Thermometric fixed points	512
24.	Vapour pressure	513
25.	Viscosity	
	A. Liquids	513
	B. Glasses	514
	Countries reporting	515

Table 1. Reference materials certified with respect to a particular physical property†

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks		
99.99±0.01	Potassium hydrogen phthalate (84 h)	99.99±0.01				
$\begin{array}{c} 99.98 \pm 0.02 \\ 100.00 \pm 0.01 \end{array}$	Benzoic acid (350) Boric acid	$\begin{array}{c} 99.98 \pm 0.02 \\ 100.00 \pm 0.01 \end{array}$	I	Also certified for ¹⁰ B and ¹¹ B atom per cents.		
99.95	α -Aluminum oxide (720)	2. CALORIMETRY See Remarks	A. He I	at capacity Enthalpy and heat capacity certified from 273 to 2250 K. Enthalpy accurate to $\pm 0.1\%$ heat capacity from $\pm 0.01\%$ at lowest temperature to $\pm 0.3\%$ at 1200 K. See certificate for full explanation of accuracy and precision.		
99.99	Heptane	See Remarks)	These materials are not certified as NBS Standard		
99.99 99.99 +	Benzoic acid α-Aluminum oxide	See Remarks See Remarks	I	Reference Materials, but are held by the Calorimetry Conference, and are available to qualified users from E. J. Prosen at NBS. Heat capacity data are reported by Ginnings and Furukawa, J. Am. Chem. Soc. 75, 522 (1953).		
		D. Heat of the well				
99.99	Neopentane	628.7 \pm 0.3)cal·mol ⁻¹ at (140.49 \pm 0.05) K (740.0 \pm 0.3)cal·mol ⁻¹ at Trip. Pt 256.75 K	E E	Purified by using a spinning band type distillation tower of 3 m height and an adsorption column packed with molecular sieve.		
		C Energy of	rombusti	0 n		
99.99	Benzoic acid	Certified for each batch	F	Purity derived from temperature/enthalpy curves.		
	Benzoic acid	Certified for each batch	Н	Value certified by NPL, but samples prepared, purified and sold by firms, e.g. BDH and Bureau of Analyzed Samples.		

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks
99.997	Benzoic acid (39i)	(26.434 ± 0.003) kJ·g ⁻¹	I	Value certified when burned under, or corrected to the specific conditions described on the certificate
99.993	2,2,4-Trimethyl- pentane (217b)	$47.713 \text{ kJ} \cdot \text{g}^{-1} \pm 0.02\%$	Ι	Value certified when burned under or corrected to the specific conditions described on the certificate.
		D. Solution ca	alorimetr	у
99.94	2-Amino-2-(hydroxy- methyl)-1,3-pro- panediol [Tris(hydroxy- methyl)amino- methanel (724a)	245.76 ± 0.26 J·g ⁻¹ (with HCl) 141.80 ± 0.19 J·g ⁻¹ (with NaOH)	I	Certified as to purity and homogeneity. This compound is intended to serve as a uniform material for checking calorimeters in different laboratories. See certificate for exact conditions.
	(THAM or TRIS)			
Natural Brazilian Quartz	α-Quartz	-2362.2 ± 1.1 J·g ⁻¹ at .353.15k in 24.4 wt% HF	Ι	See certificate for full details, also M. V. Kilday and E. J. Prosen, NBS Tech. Report 10 561 (1971).
G + A A + A + A + A + A + A + A + A + A + A + A 	3. SP	ECTROPHOTOMETRY AND T	RISTIM	IULUS COLORIMETRY
Set of 10 plate tristimulus cole coating).	es of different colors f orimeters (ceramic tile	or calibration of s with a colored	В	The plates are available with color specification according to any CIE observer (2° and 10°) standard illuminant, and geometry of illuminating and viewing.
Set of 12 ceramic tiles consisting of 3 neutral greys and 9 spectrally selective colors for testing different types of error in colorimetric instruments.				Spectral reflection calibrations 300 (10) 760 nm or 300 (5) 760 nm and colorimetric quantities x, y, Y%, u, v under illuminants A, C and D65 for any of 3 geometries of illumination and
Orange-Red Glass (2101) Signal Yellow Glass (2102) Sextant Green Glass (2103) Cobalt Blue Glass (2104) Selective Neutral Glass (2105)			I	view: 0°/45°, 0°/diffuse, 8°/total. Spectrogram taken on each glass. For description of spectrophotometer- tristimulus integrator system see H. J. Keegan, J. C. Schleter and D. B. Judd, J. Res. Nat. Bur. Stand. 66A, 203 (1962).
Two types of polished and unpolished black, bulk-dyed			В	Reference: DIN: 67 530
	Glass Filter Set of three (930a)	Each filter individually certified for absorbance at 440, 465, 590, and 635 nm, with relative uncertainty of $\pm 0.5\%$	I	R. Mavrodineanu, NBS Tech. Note 544 (1971).
	Set of three liquid absorbance filters	Each liquid filter certified for absorbance at 302, 395, 512, and 678 nm.	Ι	See R. W. Burke <i>et al.</i> , J. Res. Nat. Bur. Stand. 76A (1972).
	Quartz Cuvette	Pathlength and parallelism	I	
	Set of 16 enameled iron discs	Spectral reflectance values from 380 to 760 nm.	D	Tristimulus values and chromacity coordinates under illuminates A and C for geometries $45^{\circ}/0^{\circ}$ and $0^{\circ}/45^{\circ}$
White reflection standard, durable, polished Russian MS-20 photometric Opal glass. Reflection value high over entire calibrated spectral range.		dard, durable, polished metric Opal glass. Reflection e calibrated spectral range.	Н	Same conditions as second item, above, in this category.
	Set of 6 neutral glass filters	Transmittance and absorbance certified at 9 wavelengths in region from 480 to 640 nm.	G	Uncertainty at 95% confidence level = $\pm 0.3\%T$
	Set of 24 rotating two-sector discs	E.g. Disc No. 1, $A = 1.39470$ Disc No. 24, $A = 0.01770$	G	Uncertainty at 99% confidence level = 0.02% Primary metrological standard
	(White) reflection standard	Spectral radiance factor for the d/O-geometry in the wavelength region from 320 to 800 nm.	C	(From the spectral values, integrated values such as radiance factor or tristimulus values X, Y, Z may be calculated with sufficient accuracy.)
†Units are ø	iven as reported by is	Spectral radiance coefficient for the 45/O-geometry in the wavelength region from 390 to 800 nm.	С	Reference: DIN 5033 Blatt 9 The BaSO ₄ powder is available from E. Merck, Darmstadt. A random sample of every batch is measured by the Physikalisch-Technische Bundesanstalt, Braunschweig. The values of the spectral radiance factor and spectral radiance coefficient are considered as representative for the whole batch.

Table I (Contd.)	.)
------------------	----

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks		
		4. DENS	SITY			
99.95	Cyclohexane	(Confidence la (0.77854 ± 0.00005) g·cm ⁻³	evel 99% آ	<i>b</i>)		
Unknown	Kerosene(a)	(20°C) (0.81016 ± 0.000005)g·cm ⁻³				
Unknown	Kerosene(b)	$(20^{\circ}C)$ (0.86188 ± 0.000005)g·cm ⁻³				
07.5	Mathulaualahavana	$(20^{\circ}C)$ (0.77027 ± 0.000005)g cm ⁻³	G }	Temperature flotation method and		
>99.9	Toluene	(0.77037 ± 0.000003) g·cm (20°C) (0.86668 ± 0.000005) g·cm ⁻³		pyknometric method. Density for these materials is given also at 10, 30,		
99.5	2,2,4-Trimethyl-	(20°C) $(0.69194 \pm 0.000005)\text{g}\cdot\text{cm}^{-3}$		40, 50 and 60 C.		
00.002	pentane	(20°C) (0.60192 ± 0.000002)g. cm ⁻³)	, T	Also cartified for best of combustion		
+0.003	2,2,4-1 rimethyl- pentane (217b)	(0.69183 ± 0.00002)g·cm) (20°C)	1	and refractive index and at 25 and 30°C.		
99.72	<i>n</i> -Hexane	$659.38 \pm 0.07 \text{kg} \cdot \text{m}^{-3}$ (20°C))			
Unknown	n-Heptane	683.79 ± 0.03 kg·m ⁻³ (20°C)				
99.75 99.40	Isooctane	$691.96 \pm 0.07 \text{kg} \cdot \text{m}^{-3}$ (20°C) 702 57 ± 0.03 kg $\cdot \text{m}^{-3}$ (20°C)	-			
97.20	<i>n</i> -Octane <i>n</i> -Nonane	702.57 ± 0.05 kg m ⁻³ (20°C) 717.68 ± 0.06 kg·m ⁻³ (20°C)	G 👌	Certified also at 25, 30, 35, 40, 45, and 50°C.		
99.80	Methylcyclohexane	$769.58 \pm 0.07 \text{kg} \cdot \text{m}^{-3}$ (20°C)				
99.98 99.74	Cyclohexane	$778.58 \pm 0.06 \text{kg} \cdot \text{m}^{-3}$ (20°C) 866 77 ± 0.04 kg \ m^{-3} (20°C)	{			
<i>))</i> ./+	Tolucile	000.77 = 0.04kg m (20 C)				
		5. DIELECTRIC CONSTAN	ITS (rel	ative permittivity)		
	Cyclohexane	$2.025 \pm 0.002(1.8 \text{ MHz}, 20^{\circ}\text{C})$]	Durified with melecular signal		
	chloride	$2.240 \pm 0.002(1.8 \text{ MHz}, 20^{\circ}\text{C})$	' D }	spectroscopically pure.		
	Chlorobenzene	5.690 ± 0.002(1.8 MHz, 20°C)	, j	speen oberpleany parel		
	Cyclohexane (1511)	2.02280 ± 0.00004(0.75-12 kHz	z)			
	1,2-Dichloroethane	at 20°C 10.6493 ± 0.0008(0.75–12 kHz)	1	Certified also at 25 and 30°C.		
	Nitrobenzene	at 20°C 35.7037 ± 0.0010(0.75–12 kHz)				
		at 20°C	J			
		6 DIFEEDENTIAL TU	DMAT	ANIAT VOIC*		
High-purity	Potassium nitrate	Equilibrium value 127.7°C	SKMAL)	ANALISIS		
	(758)	Extrapolated onset 128°C				
Iliah avaita	In diver (matal) 759)	Peak 135°C				
High-purity	Indium(metal) /38)	Equilibrium value 157°C Extrapolated onset 154°C				
		Peak 159°C				
High-purity	Tin(metal) (758)	Equilibrium value 231.9°C				
		Peak 237°C				
Commercial	Potassium per-	Equilibrium value 299.5°C				
grade	chlorate (758) (759)	Extrapolated onset 299°C	I }			
Analysed	Silver sulphate	Feak 309°C Equilibrium value—				
reagent	(758) (759)	Extrapolated onset 424°C				
NT- 4 1	011 (750) (7(0)	Peak 433°C				
Natural quartz	Silica (759) (760)	Equilibrium value 5/3°C Extrapolated onset 571°C				
quartz		Peak 574°C				
Analysed	Potassium sulphate	Equilibrium value 583°C				
reagent	(759) (760)	Extrapolated onset 582°C Peak 588°C	l			
		Y CAR SOU C	,			

*Note: These reference materials are certified by the International Confederation for Thermal Analysis. They are issued through the National Bureau of Standards. They are for use in calibrating the temperature scale on differential thermal analysis and related thermoanalytical equipment under operating conditions, and are to be used only in the heating mode.

_

_

_

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks
Analysed reagent	Potassium chromate (759) (760)	Equilibrium value 665°C Extrapolated onset 665°C Pack 672°C		
Analysed reagent	Barium carbonate (760)	Equilibrium value 810°C Extrapolated onset 808°C	I	
Analysed reagent	Strontium carbonate (760)	Equilibrium value 925°C Extrapolated onset 928°C Peak 938°C		
		7. MAGNETIC SUSC	EPTIBIL	JTY
>99.9	Aluminum (763)	$0.604 \times 10^{-6} \text{ cm}^3 \cdot \text{g}^{-1}$ at 297K	۱	
>99.9 >99.9	Platinum (764) Palladium (765)	$\begin{array}{l} (\text{uncertainty} < \pm 0.5\%) \\ 0.991 \times 10^{-6} \text{ cm}^3 \cdot \text{g}^{-1} \text{ at } 297\text{K} \\ 5.26 \times 10^{-6} \text{ cm}^3 \cdot \text{g}^{-1} \text{ at } 297\text{K} \\ 122.2 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1} \text{ at } 207\text{K} \end{array}$	I	Same uncertainty as for Al
> 99.9 99.99 wt% (tested for 18 elements)	Potassium chloride	125.5 × 10 ° cm \cdot g ° at 297K at 25°C, specific conductivity is 146.6 × 10 ⁻⁶ S·cm ⁻¹ for 0.0745 g KCl in 1 kg H ₂ O solution	G	Specific conductivity certified at 0, 18 and 25°C for four different molalities ranging from 0.0745 to 71.1352 g KCl in 1 kg H_2O solution.
		8. MOLAR CONDU	JCTANC	Е
Analytical	Potassium chloride	$0.1 \text{ mol } dm^{-3}(116.8 \pm 0.1)$		
reagent grade KCl		$S \text{ cm}^{-1}$ (20°C) 0.01 mol dm ⁻³ (127.7 ± 0.1)	D	
		$S cm^{-1}$ (20°C)		
	9 Polystyrene (narrow molecular weight distribution) (705)	MOLECULAR WEIGHT OF M _N 170 900 ± 580 M _W 179 300 + 740	POLYM	ERS $M_N = Number-average molecular weight$ (measured by osmotic pressure). $M_{m-} = Weight-average molecular weight$
		$M_z 189 800 \pm 2100$	Ι	(measured by light scattering). $M_z = Weight-average molecular weight$
	Polystyrene (broad	M 257 800 + 930	T	(measured by sedimentation equilibrium). $M_{-}:M_{-}:M_{-}:M_{-}=1$ 12:1 07:1
	molecular weight distribution) (706)	$M_z 288 100 \pm 9600$	1	$M_Z: M_W: M_N = 2.9: 2.2: 1$
	Polyethylene (linear)	$M_z = 138\ 000 \pm 3700$		Limiting viscosity number, melt flow rate and density are also certified. See
	whole polymer	$M_w = 53 070 \pm 620$ $M_N = 18 310 \pm 360$	Ι	J. Res. Nat. Bur. Stand. 76A, No. 2 (1972).
	Polvethylene	$M_z: M_w: M_N = 7.54:2.90:1$ Limiting viscosity		
	(branched) whole polymer	number = 0.8132 ± 0.0033 dl·g ⁻¹ at 130°C in 1-chloronaphthalene melt index = 1.19 ± 0.010 g/10 mi	I	Limiting viscosity number given also for 1,2,4 trichlorobenzene and decalin.
	Dolumnonulono	density = $0.9312 \pm 0.0006 \text{ g} \cdot \text{cm}^{-3}$	и	Potches available in the range 10,000
	(narrow molecular weight distribution)	for M_N and M_W	п	$M_w < 33,000$ and $M_w: M_N \approx 1.5$
	Polypropylene (broad molecular weight distribution)	Certified for molecular weight distribution	H	Molecular weight distribution determined by gel permeation chromatography in the range 9 000-400 000
	Polystyrene (broad molecular weight	Certified for molecular weight distribution	Н	In the range 10,000–1,500,000
	ostribution) Poly(vinylchloride) (narrow molecular weight distribution)	Certified for each batch for M_N and polydispersity	н	Polydispersity = M_w/M_N as determined by gel permeation chromatography. Batches available in the range 30,000 < M_N < 180,000 and $M_wM_N \approx 1.5$
	Polypropylene (narrow molecular weight distribution)	Each batch certified for M_w and M_N	Н	Batches available in the range $M_w = 10,000-350,000$ (measured by light scattering). M_N measured by osmometry.

[†]Units are given as reported by issuing laboratory.

Table 1 (Contd.)

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks
	10.	MÖSSBAUER DIFFERENT	IAL CHE	MICAL SHIFT
Single crystals grown from solution of ACS grade salt	Sodium pentacyano- nitrosylferrate(iii) dihydrate (725) (Sodium nitro prusside)	(0.0000 ± 0.0002)cm/s at 25°C	Ι	Average value of electric quadrupole splitting (0.1726 ± 0.0002) cm/s.
Juiv	Iron Foil (1541)	Six peak positions certified with respect to SRM 725, above.	Ι	See NBS Spec. Publ. 260-13 (1972).
(Note: pH material whose supplier for de	pH has the smallest un tailed information, and	certified by D, G, H, and I. pH certainty quoted. Purities rang the definition of the pH scale 1675 ± 0.005 at 20°C	values, fo e from 99. employed.)	or each material listed, are given only at 20°C for the 5 to $>99.9 \text{ mol}\%$. Readers should contact the specific
	Potassium	1.675 ± 0.005 at 20°C	D,G,I	
	Potassium hydrogen tartrate	3.557 ± 0.005 at 25°C	D,G,I	
	Potassium hydrogen phthalate	4.003 ± 0.005 at 20°C	D,G,H,I	H certifies, but samples are prepared and distributed by commercial firms, e.g. BDH
	Potassium dihydrogen phosphate	6.878 ± 0.005 at 20°C	D,G,I	$0.025 \text{ mol kg}^{-1}$ of KH ₂ PO ₄ plus 0.025 mol kg ⁻¹ Na ₂ HPO ₄
	<i>plus</i> disodium hydrogen phosphate	7.426 ± 0.005 at 20°C	D,G,I	0.008695 mol kg ⁻¹ KH2PO4 plus 0.03043 mol kg ⁻¹ Na,HPO4.
	Sodium tetra- borate decahydrate Sodium hydrogen	9.225 ± 0.005 at 20°C	D,G,I	
	carbonate <i>plus</i> sodium carbonate	10.064 ± 0.005 at 20°C	D,I	0.025 mol kg ⁻¹ of solution for both NaHCO ₃ plus Na ₂ CO ₃
	Calcium hydroxide	12.63 ± 0.1 at 20°C	G	

Note for Source G: whenever possible pH value is being standardized vs platinum hydrogen electrode.

	12. p	D	
Potassium dihydrogen phosphate (2186-I) plus disodium hydrogen phosphate (2186-II)	7.449±0.01 (20°C)	I	Purities meet ACS Specifications. 0.025 mol kg ⁻¹ KH ₂ PO ₄ + 0.025 mol kg ⁻¹ Na ₂ HPO ₄ .
Sodium hydrogen carbonate (2191) plus sodium carbonate (2192)	10.794±0.01 (20°C)		Purities meet ACS Specifications. 0.025 mol kg ⁻¹ NaHCO ₃ + 0.025 mol kg ⁻¹ Na ₂ CO ₃ .

	13. POLARIMETRY-SA	CCHA	RIMETRY
Sucrose	α [546.1 nm, 20°C] = 78.35 ± 0.01°	G	At ICOMSA definition of 100°S refers to 26 g per 100 cm ³ of solution.
Sucrose (17a)	α (546.1 nm, 20°C) = 78.342°	Ι	Concentration 26 g/100 cm ³ . Moisture less than 0.01%, reducing substances less than 0.02%.
D-Glucose (41a)	α (589.25 nm, 20°C) = 66.529° α (D, 20°C) = 52.7°	Ι	Concentration 26 g/100 cm ³ . α (546.1 nm, 20°C) = 62.032°. Ash less than 0.01%, moisture less than 0.1%.
Quartz plates	Degree of optical rotation ±0.001°	С	Quartz plates with certified values of optical rotation are used as standards for the calibration of saccharimeters in the spectral range from 540 to 590 nm. Specifications for quartz plates are given in OIML- Recommendations No. 14. Users have to send plates to PTB for certification. See: K. Zander, W. Seiler, R. Bünnagel, Präzisionsmessungen der Rotationsdispersion wässriger Saccheroselösungen von 18°C bis 30°C als Basis für die Internationale

Zuckerskala. Zucker, 27, S. 642–647 (1974).

511

		Table 1 (C	ontd.)	
Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks
		14. REDUCTOMETR	Y-OXID	DIMETRY
	Arsenic trioxide (83c)	99.99 ± 0.02	_	
	Potassium	99.98 ± 0.02	I	Purity meets ACS Specifications.
	dichromate (1361c) Sodium oxalate (40 g)	99.95 ± 0.02		
		,,,,,, = 0.0 -		
		15. REFRACTI	VE IND	
99.95	2,2,4-Trimethyl-	$1.39139 \pm 0.00003 n_{D} (20^{\circ}C)$	G	95% confidence level.
99 993 + 0 002	2.2.4-Trimethyl-	at 589.25 nm and 20°C	I	Certified for 7 wavelengths and at 20, 25,
	pentane (217b)	n = 1.39147		and 30°C. Uncertainty of all values less
		1 10 11 1 0 00000 (0000)	0	than 0.00002. Where size 152 \times D density 000 0 km m ⁻³
Unknown	Methylsilicon oil	$1.40444 \pm 0.00003 n_D (20^{\circ}C)$	G	Viscosity 152 CP density: 969.0 kg·m
Unknown	Cuclobevone	$1.42431 \pm 0.00003 n_{\rm D} (20 \text{ C})$ $1.42622 \pm 0.00003 n_{\rm D} (20^{\circ}\text{C})$	G	All at 95% confidence level
99.75	Toluene	$1.42675 \pm 0.00003 n_{\rm P} (20^{\circ}{\rm C})$	{	
97.8	1-Bromonaphthalene	$1.6580 \pm 0.0002n_{\rm p} (20^{\circ}{\rm C})$	J	
98.9	Chlorobenzene	$1.52452 \pm 0.00003 n_{D}$ (20°C)	·]	
99.4	o-Nitrotoluene	$1.54643 \pm 0.00003 n_{D}$ (20°C)	G }	95% confidence level.
99.95	Trimethylpentane	$1.39139 \pm 0.00003 n_{D}$ (20°C)	, ,	
	Glass (1820)	At hydrogen C line $(656.28 \text{ nm}) = 0.05 \text{ mm}$	1	n given for 13 different spectral source wavelengths
		1.48532 ± 0.00001		wa wangara
	Optical glass "Crown"	$1.51840 \pm 0.00002 n_{p}$ (20°C)	١	
	Optical glass "Dense	$1.62292 \pm 0.00001 n_{D}$ (20°C)		
	Barium Flint"		G }	
	Optical glass "Dense	$1.65145 \pm 0.00001 n_{D}$ (20°C)		
	Barium Flint"			
		16. RELATIVE	HUMIT	DITY
Analytical	Lithium chloride	$RH = 12.6 \pm 1\%$ at 20°C	G	All RH data at 99% confidence level
Reagent Grade	Monohydrate			
used for all	Magnesium chloride	$RH = 33.6 \pm 1.2\%$ at 20°C	G	$\mathbf{RH\%} = \mathbf{p}/\mathbf{p}_{w} \cdot 100$
Relative	Hexahydrate			Instructions given for all RH reference
Humidity	Manager alterate	$DII = 56.2 \pm 2.207$ at 20%	C	materials.
Materials	Magnesium intrate Hexabydrate	$KH = 30.2 \pm 2.2\%$ at 20 C	U	
Materials	Sodium chloride	RH = 76.2 ± 1.7% at 20°C		
	Ammonium sulfate	$RH = 81.3 \pm 1\%$ at 20°C	G	Data also certified at 25 and 30°C.
	Potassium nitrate	$RH = 95.0 \pm 1.7\%$ at 20°C		
	Potassium sulfate	$RH = 98.9 \pm 1.3\%$ at 20°C		
		17 SPECIJI AR SPECTI	RAL RE	FLECTANCE
	Aluminum on	Certified for near-normal	I	At wavelengths from 0.2537 to 30 μ m and
	glass (2001-04)	(9°) specular reflectance		band widths from 1.0-1800 nm.
			_	Precision is σ_m of six replicate measurements.
	Gold on glass	Same as above	I	Same. See reference NBS Spec. Publ. 260-38
	(2005-08)			(1972).
		18. SURFAC	CE ARE	A
High-puritv	Carbon black	$11.1 \pm 0.8 \text{ m}^2\text{g}^{-1}$	H	Graphitized at 2700°C. For all four of
(full analysis		5		these reference materials, specific surface
available)				areas are nitrogen BET values and were
	Carbon black	$71.3 \pm 2.7 \text{ m}^2\text{g}^{-1}$	H	calculated from adsorption isotherm data
• .	Non-porous	$165.8 \pm 2.1 \text{ m}^2 \text{a}^{-1}$	н	Irom 13 laboratories. Materials produced by plasma process
	silica	100.0 ± 2.1 III g	п	materials produced by plasma process.
	Silica gel	$286.2 \pm 3.5 \text{ m}^2\text{g}^{-1}$	Н	Micronized meso-porous material.
	-	-		
		19. SURFACE	E TENSI	ION
	Sulfuric acid	25.9 to $56.2 \pm 0.16 \text{ mN} \cdot \text{m}^{-1}$	D	Density from $(0.90-1.84) \times 10^3 \text{ kg} \cdot \text{m}^{-3}$
00	and ethanol	(10 /0 + 0.00) >T/ + 0000		-NI (- (MilliNesside Medae)
99. 00.0	n-Hexane	(10.42 ± 0.02) mN/m at 20°C (20.23 ± 0.02) mN/m at 20°C	່ຼີ	min/in (mininewion per meter) = dyn/cm; Surface tension liquid_air
99.9	<i>n</i> -Octane	(21.64 ± 0.02) mN/m at 20°C	ſ	Measuring principle: Modified Wilhelmy-
		······································		plate procedure.

[†] Units are given as reported by issuing laboratory

-

Table I (Contd.)	Tabl	le 1 i	(Contd.)
------------------	------	--------	----------

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks
		20. THERMAL CONDUC	TIVITY ($(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$
99.98	Platinum	$(70.25 \pm 0.0075t) \pm 0.5\%$	С	0°C < t < 100°C
99.0	Propyl alcohol	$(0.1575 - 0.000230t) \pm 0.5\%$	С	$10^{\circ}C < t < 40^{\circ}C - 0.05$
99.8	Isopropyl alcohol	$(0.1395 - 0.000202t) \pm 0.5\%$	C	$10^{\circ}C < t < 40^{\circ}C - 0.1$
99.5	Butyl alcohol	$(0.1534 - 0.000211t) \pm 0.5\%$	C	$10^{\circ}C < t < 55^{\circ}C - 0.1$ Water (mass%)
99.8	see Butyl alcohol	$(0.1400 - 0.000203t) \pm 0.5\%$	C	$10^{\circ}C < t < 55^{\circ}C - 0.05$
99.2	Isobutyl alcohol	$(0.1353 - 0.000166t) \pm 0.5\%$	Ċ	$10^{\circ}C < t < 55^{\circ}C - 0.05$
33.3 T	(734)	A certified from 6 to 280K	-	Stand. 74A, 673 (1970).
	Austenitic stainless steel (735)	λ certified from 5 to 280K	I	Same reference as above.
		21 THERMAL EMISSIVI	ΓΥ ϵ (Di	mensionless)
	Platinum—13%	Certified for ϵ at 800, 1100.	I	See W. N. Harrison <i>et al.</i> , Report AD426846
	Rhodium alloy (1402-09)	1400 and 1600K and waveleng from 1 to 36 μ m.	ths	National Technical Information Service (1963).
	Oxidized kanthal	Certified for ϵ at 800, 1100.	Ι	Same reference as above.
	(1420-28)	and 1300K from 1 to $15 \mu\text{m}$.	-	
	Oxidized inconel (1440-47)	Same as above.	Ι	Same reference as above.
		22. THERMAL EXPANSION	N (Expans	sivity, (α) , K^{-1})
	Borosilicate	Certified for expansion	I	See NBS Spec. Publ. 303 (1968)
	glass (731)	and expansivity from		
00.00 -+07	C	80 to 680K.		
99.99 al%	Copper	Certified for expansion	1	See T. A. Hahn, J. Appl. Phys. 41, 5096 (1970).
		20 to 800K		
99.8	Fused silica	Certified for expansion	т	
<i>))</i> ,0	I used sinca	and expansivity from	1	
		80 to 1000K.		
		23 THERMOMETRIC	FIVED	DOINTS
	Water triple	Triple point 273 16K ^a	H	International Practical Temperature Scale
	point cell	The point 275.10K	11	(1968)
9 99.999	Aluminum metal	Freezing point (660°C) ^b	С	(1700)
	Aluminum (44e)	Freezing point $(660.3 \pm 0.2^{\circ}C)^{\circ}$	Ī	International Temperature Scale (1968).
99.9+	Aluminum oxide (742)	Melting point $(2053 \pm 5^{\circ}C)^{b}$	Ι	IPTS-68, Pyrometric standard
	Benzene-water	Freezing point certified	Н	Used in STPTC Test Method RLB 24-67
		for each batch		and British Standard BS-135
99.99	Benzoic acid	Freezing point (122°C) ^b	J	
99.99	Benzophenone	Freezing point (48°C) ^b	F }	Purity derived from temperature/enthalpy curves.
99.99	Dimethyl terephthalate	Freezing point (142°C) ⁶	J	
99.99	Biphenyl	Freezing point (70°C) ^b	F	
99.999	Cadmium metal	Freezing point (321°C) ^b	С	
99.999	Copper (45d)	Freezing point	I	International Temperature Scale (1968).
00.009	Cold motol	$(1084.8 \pm 0.5^{\circ}\text{C})^{\circ}$	0	
<i>77.770</i>	Lead (49e)	Freezing point (1004.45°C)"	L T	International Temperature Scale (1069)
	Leau (490)	$(327 493 + 0.005^{\circ}C)^{\circ}$	I	international Temperature Scale (1906).
99.99	Nanhthalene	Freezing point (80°C) ^b	F	Purity derived from temperature/enthalpy curves
99.996	Neopentane	Transition point (-132°C) ^b	Ē	Purified by using a spinning hand type
			_	distillation tower of 3 m height and an adsorp-
		Triple point (-16°C) ^b	Ε	tion column packed with molecular sieve.
99.99	Phenanthrene	Freezing point (100°C) ^b	F	Purity derived from temperature/enthalpy curves.
99.994	Silver metal	Freezing point (961.93°C) ^a	С	Thermodynamic temperatures.
>99.9	Silver-copper eutectic	Freezing point (779°C) ^b	C	Thermodynamic temperatures.
99.99	1,2,4,5-Tetra-	Freezing point (140°C) ^b	F	Purity derived from temperature/enthalpy curves.
99 99	Sodium	Freezing point (07°C1b	E	Durity derived from tomporptues lathely and
<i>)7.77</i> 99 999	Sulphur	Roiling point (AAA°C) ^b	г С	r unity derived from temperature/enthalpy curves.
99.999 +	Tin (741)	Freezing point	I	Primary fixed point on IPTS-68
00 000	Tin metal	$(231.9081 \pm 0.000)^{\circ}C)^{\circ}$	0	Thermodynamic to-restore
77.777	Tin (42f)	Freezing point $(231^{\circ}C)^{\circ}$ Freezing point $(231.940 \pm 0.005^{\circ}C)^{\circ}$	C I	International Temperature Scale (1968).

Table 1	(Contd.)
---------	----------

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	Remarks
99.999	Zinc metal	Freezing point (419.58°C) ^a	С	Thermodynamic temperatures.
99.9999	Zinc (740)	Freezing point (419.58°C) ^a	Ι	Fixed point on International Practical Temperature Scale of 1968.
	Superconductive thermometric fixed point device (767)	Cadmium— $0.515 \pm 0.0025K$ Zinc— $0.844 \pm 0.0015K$ Aluminum— $1.1746 \pm 0.002K$ Indium— $3.416 \pm 0.0015K$ Lead— $7.201 \pm 0.0025K$	I]	Use of this device and discussion of how prepared and certified, see NBS Spec. Publ. 260-44 (1972).
99.9 + 99.9 + 99.9 + 99.9 + 99.9 + 99.9 + 99.9 + 99.9 + 99.8	4-Nitrotoluene Naphthalene Benzil Acetanilide Benzoic acid Diphenylacetic acid Anisic acid 2-Chloroanthra- guinone	Melting temperature 53°C ^b Melting temperature 81°C ^b Melting temperature 81°C ^b Melting temperature 115°C ^b Melting temperature 123°C ^b Melting temperature 147°C ^b Melting temperature 184°C ^b Melting temperature 211°C ^b	H	Certificates accompanying each sample state the meniscus and liquefaction (melting) temperature of the compound measured in glass capillary tubes, under controlled conditions of temperature rise. The freezing temperatures of the samples have also been measured.
99.9 + 99.9 +	Carbazole Anthraquinone	Melting temperature 247°C ^b Melting temperature 286°C ^b		

Note: Temperature of the primary fixed points for calibration on the International Practical Temperature Scale of 1968 (IPTS-68) are indicated by the superscript a. Secondary reference points carry a nominal temperature value for general information only, and are indicated by the superscript b. The temperature certified by the standardizing laboratory appears only on the certificate provided with the sample.

		24. VAPOUR F	ressur	RE
99.9968	Neopentane	35.793 ± 0.017 kN m ⁻² (256.750K)	Ε	Purified by using a spinning band type distillation tower of 3 m height and an adsorp- tion column packed with molecular sieve.
99.999 +	Gold (745)	Certified for vapor pressure over range 1300– 2100K. At 1338K (M.P.), $P = 2.56 \times 10^{-8}$ atm	Ι	1 atm = $101,325 \text{ N}\cdot\text{m}^{-2}$ See NBS Spec. Publ. 260-19 (1970) for full discussion of data and uncertainties.
99.999+	Cadmium (746)	Certified for vapor pressure over range 350– 594K. At 594K (M.P.),		
99 .999 +	Silver (748)	P = 1.51×10^{-4} atm Certified for vapor pressure over range 800– 1600K at 1235K (M.P.), P = 3.71×10^{-6} atm	Ι	See NBS Spec. Publ. 260-21 (1971) for full discussion of data and uncertainties.
99.94±0.03	Naphthalene	0.23–1.38Pa, ±5% (263.61–278.22K) 2.41–489Pa, ±2% (283.14–343.06K)	н	Vapour pressures measured over a range of temperature using a diaphragm gauge.
99.92±0.02	Hexamethylbenzene	0.28-14.39Pa, ±10% (303.10-343.02K)	Н	
		25. VISCOSITY	A. Liq	luids
	AS 2.5 oil	1.8(0.03%)* at 310.9K		
	AS 7.5 oil	6.0(0.03%)* at 310.9K		Novetonion liquid** In continuing an
	AS 75 oil	65(0.05%)* at 310.9K	А	$mN \cdot s \cdot m^{-2}$.
	AS 200 oil	180(0.08%)* at 310.9K		
	AS 600 oil	550(0.2%)* at 310.9K		

Note for Source A: *Nominal standard error of the dynamic viscosity. **These liquids also certified as to nominal density and kinematic viscosity.

Mineral oil	1-1000	(20°C)0.2%						
Polymer solutions	2000-200000) (20°C)0.5%	F	Newtonian	liquids.	In centipoise	(as ab	ove)

		_	it is the main inquired in the mapping (ab abo
Polymer solutions	2000-200000 (20°C)1%		except last; confidence level >95%.
Polymer solution	2000-20000 (20°C)2% (poise)		
Series of 11	Certified for actual batches		Uncertainties at $>95\%$ confidence level.
mineral oils	available, in centipoise.	G	Certified also at 50 and 80°C.
	Range over all oils is from		$cP = mN \cdot s \cdot m^{-2}$
	$5.896 \pm 0.1\%$ to $1298 \pm 0.2\%$		
	at 20°C		

†Units are given as reported by issuing laboratory.

Table 1	(Contd.)
---------	----------

Purity (mol %)	Chemical name (Identification No.)	Certified and acc	value† uracy	Source	Remarks
	Silicone oil Silicone oil	$245,000 \pm 1.5 \\317,000 \pm 2.0$	% at 20°C % at 20°C	G	Values via rotating cylinder viscometer and by 'Visco wage' viscobalance.
Note for S	ource G: All values ar suspended le	e given for mater vel Ubbelohde vis	ials actually in scometers.	stock. D	Determined by the use of long (400 mm) capillary tube
	Type JS 2.5–2000 (series of 10 liquids)	Certified for visc centipoise and k viscosity in cent Range for viscos from 2 to 1800	cosity in inematic istokes. sity at 20°C	E	
	Type 60H Type 200H Mineral oil Mineral oil	$\begin{array}{c} 60,000 \text{ cSt at } 20\% \\ 200,000 \text{ cSt at } 20\% \\ 1-1000 \text{ cP } \pm 0.1\% \\ 10^3-10^4 \text{ cP } \pm 0.5\% \end{array}$	C °C 5 at 20°C 6 at 20°C	E E D	Newtonian liquid. Certified also for density and kinematic viscosity
	Polyisobutenes Silicone oil	$10^{4}-10^{5} \text{ cP} \pm 1.59$ $10^{5}-3 \times 10^{5} \text{ cP} \pm 10^{5}$ at 20°C	6 at 20°C 1.5%	D	Newtonian liquid. Rotating cylinder viscometer method used.
	Series of 11 Mineral oils	Certified for viso centipoise at 20° $1.503 \pm 0.1\%$ to 1	cosity in C. Range from $729 \pm 0.2\%$.	G	Certified also for kinematic viscosity and density. Data also for 50 and 80°C.
	Series of 7 Polyisobutylenes	Certified for visc centipoise at 20° $4170 \pm 1.3\%$ to 58	cosity in C. Range from $39 \times 10^3 \pm 1.0\%$.	G	Data also at 50, 80, and 100°C.
	Oil	Viscosity dyn. in cP	at 20°C kin. in cSt]	
	1 B 2 A 5 B	0.97 2.12 4.59	1.25 2.64 5.83	,	
	10 A 10 B 10 D* 10 C	8.5 12.9 14.7 18.3	10.2 15.2 16.7 21.2		
	20 C 20 E* 50 C	21.2 45.5 88	24.9 49.6 100		
	100 A 100 D* 100 C	117 131 157	134 149 177	c	 Centipoise c St: Centistokes Amounts available: 100 ml, 200 ml, 500 ml. Oils marked by * indicate amounts
	200 A 200 C 200 D*	223 237 338	254 265 381		of 1000 ml are also available.
	500 B 500 F 500 E*	430 650 875	458 730 970		
	2000 C 2000 E 2000 A	1790 2850 4100	1990 3280 4700		
	10,000 C 10,000 D 20,000 C	8500 13,500 26,600	9700 15,200 30,000	J	
	Soda-lime silica	25.	VISCOSITY 4236 118	B. Glas	sses Softening point (avg.) 724°C
		$\log_{10} \eta = -1.626 \circ$ $\sigma = 0.020$ (<i>t</i> in °C)	$+\frac{72.0.110}{t-266}$	Ι	Annealing point (avg.) 546°C Strain point (avg.) 504°C

Table 1	(Contd.)

Purity (mol %)	Chemical name (Identification No.)	Certified value [†] and accuracy	Source	e Remarks
	Lead-silica glass (711) SiO ₂ 46.0% PbO 45.32% K ₂ O 5.62% Na ₂ O 2.50% R ₂ O ₃ 0.56%	$log_{10} \eta = -1.621 + \frac{4254.649}{t - 1521}$ $\sigma = \pm 0.035$ (<i>t</i> in °C)	I	Softening point (avg.) 602°C Annealing point (avg.) 432°C Strain point (avg.) 392°C
	Borosilicate glass (717) SiO ₂ 70% B ₂ O ₃ 17% K ₂ O 8% Na ₂ O 1% Al ₂ O ₃ 3% Li ₂ O 1%	$\log_{10} \eta = -1.546 + \frac{4775.14}{t - 198.3}$ $\sigma = 0.029$ (t in °C)	Ι	Softening point (avg.) 720°C Annealing point (avg.) 516°C Strain point (avg.) 471°C
(Gl is S Na bas equ Fu Vis DC	(Glasses from 2 melts are available. Nominal composition is $SiO_2 = 72.2\%$; $Al_2O_3 = 1.0\%$; $CaO = 6.6\%$; MgO = 4.2%; Na ₂ O = 15.1% (plus others). Viscosity is certified on basis of Vogel equation; mean deviations (in K) from the equation are given together with constants of the Corr Function. Full details are found in G. Meerlender, Viskositäts-Temperaturverhalten des Standardglases I der DGG, Glastechnische Berichte 47, 1–3 (1974).			

†Units are given as reported by issuing laboratory

THE COUNTRIES REPORTING:

A. Australia	Commonwealth Scientific and Industrial Research Organization
	National Measurement Laboratory
	University Grounds, City Road
	Chippendale, NSW 2008
B. Germany	Bundesanstalt für Materialprufung
	Unter den Eichen 87, D-1 Berlin 45
C. Germany	The Physikalische-Technische Bundesanstalt
	33 Braunschweig, Bundesalle 100
	Federal Republic of Germany
D. Hungary	National Office of Measures
	Németölgyi ut 37-39, sz.
	Budapest XII, Hungary
E. Japan	National Chemical Laboratory for Industry
	Ministry of International Trade & Industry
	1-1 Honmachi, Shibuya-ku
	Tokyo, 151 Japan
F. Netherlands	Institute for Physical Chemistry TNO
	Utrechtseweg 48, P.O. Box 108
	Zeist, The Netherlands
G. Poland	Division of Physico-Chemical Metrology
	National Board for Quality Control and Measures
	2, Elektoralna Street, Warsaw, Poland
H. United Kingdom	National Physical Laboratory
	Teddington, Middlesex, UK
I. United States	Office of Standard Reference Materials
	US Department of Commerce
	National Bureau of Standards
	Washington, DC 20234, USA