V. I. MATKOVICH

Research & Development Division, The Carborundum Company, P.O. Box 337, Niagara Falls, New York 14302, USA

ABSTRACT

The role of polyatomic groups in refractory borides is examined. Various arrangements of icosahedral boron groups are reviewed with emphasis on the crystal chemistry of these structures. It is demonstrated that formal presentation of lower borides in terms of tetrahedra (four metal atoms or two metal and two boron atoms) can be utilized to simplify understanding of these structures and to show relationship among structures that otherwise appear unrelated. It is shown that the M_2B_2 configuration appears in a great majority of lower borides. Some principles on which these structures are built are described for the first time.

INTRODUCTION

Many problems in identification of phases and variations in compositions of refractory borides can be traced to the lack of understanding of the role of polyatomic structural units in boron and related compounds. Thus, though a good quality boron was prepared at the beginning of the century¹ and even such complex compounds as $C_2Al_3B_{48}$ have been identified² difficulties in distinguishing between boron, aluminium borides, aluminium boro-carbides etc.^{3, 4}, still seem to persist. Similarly, considerable amounts of work have been done since Moissan reported the existence of a boron carbide with the composition of B_6C^5 , yet our recent work (unreported) indicates that the homogeneity range in the boron-carbon system has not yet been resolved. The consideration of stoichiometries, coordinations, electronic structure, nature of bonding, etc. have been applied to refractory borides with considerable difficulties and generally with less than satisfactory results. The difficulty arises from the facts that :

- (a) chemically different compounds are structurally closely related and produce similar x-ray patterns,
- (b) many structures may be stable only in the presence of impurities, and
 (c) many atomic positions show a tendency to partial occupancy⁶.

A helpful concept in the understanding of borides is based on the observation that boride structures can be described in terms of three-dimensional networks of polyatomic units with additional atoms being accommodated in the interstices among these groups. The variations in compositions and compounds can, thus, often be interpreted by either multiple or partial

occupancy of the interstitial sites by various atoms within the same structural framework. This concept is reviewed in this presentation with particular emphasis on the icosahedral B_{12} groups and the tetrahedral M_2B_2 groups. Some aspects of the M_2B_2 units are examined here for the first time.

PACKING ARRANGEMENTS IN HIGHER BORIDES

The concept of packing in higher borides is based on the observation that quasi-spherical polyhedral groups of 12 or 84 boron atoms form threedimensional arrangements which can be described in terms of stacking arrangements of closest packed layers of polyhedral units. There are in principle six basic models that can be derived in this manner by use of equal size spheres. The units may have coordination of eight, ten or twelve (referred to as primitive, close packed and closest packed arrangements, respectively). A coordination of eight is obtained by stacking the closest packed layers one above the other, so that each unit has only one close neighbour in the adjacent layers [see Figure 1(a)]. In the idealized case of equal size spheres. only one model can be classified in this group and is denoted as HP (hexagonal primitive arrangement). A coordination of ten is obtained by stacking the closest packed hexagonal layers in such a way that each unit has two close neighbours in each of the adjacent layers. In the idealized case of equal size spheres, three different models can be derived in this manner. These are: tetragonal close packing (denoted as TCP), composed of two different layers

Figure 1. Packing models that can be derived by stacking of closest packed layers of spheres: (a) HP hexagonal primitive arrangement: (b) HCP hexagonal closest packing arrangement; (c) CCP cubic closest packing arrangement; (d) TCP tetragonal close packing arrangement; (e) CPH close packed hexagonal arrangement and (f) OCP orthorhombic close packing arrangement.

[illustrated in Figure I(d)]; close packed hexagonal arrangement (denoted as CPH), composed of three different layers [Figure I(e)]; and orthorhombic close packing arrangement (denoted as OCP), composed of four different layers [Figure I(f)]. A coordination of twelve is obtained by stacking closest packed hexagonal layers in such a way that each unit has three close neighbours in each of the adjacent layers. In the idealized case of equal size spheres, two different models can be derived in this manner and these are the well-known hexagonal closest packing (denoted as HCP) and cubic closest packing (denoted as CCP) arrangements illustrated in Figures I(b) and I(c), respectively.

The polyhedral atomic groups are not ideal spheres and hence the observed arrangements are as a rule somewhat distorted and often result in a change of symmetry of the unit cell. Thus, a variety of models can be derived from the six basic ones listed above. As has been proposed⁶, the specific model may be denoted simply by use of the capital letters describing the basic packing model. A numeral preceding these letters is used to describe the degree of multiplicity of the actual cell volume over that of the basic model and lower case letters following the capital letters to indicate the actual cell symmetry (r, t, o, etc. to indicate rhombohedral. tetragonal and orthorhombic symmetry, respectively). Use of this type of notation is illustrated in Table 1 and the following discussion of B_{12} borides. Presence of B_{84} units rather than B_{12} is indicated by the lower case letter v immediately following capital letters. for example, 1/4CCPvr indicates a cubic closest packing arrangement of B_{84} units with a rhombohedral unit cell which has 1/4 of the normal CCP volume.

The B_{12} polyhedral groups with dimensions of 5.1 Å are considerably larger than single atoms so that interstitial openings present in these structures may accommodate not only individual but even groups of atoms. The atoms present in these interstitial openings can play a role in satisfying the steric and electronic requirements of the icosahedral units. For example, such atoms may provide crosslinking between the icosahedral boron groups and contribute to the bonding coordination of boron atoms^{28, 29}. In addition, the interstitial atoms may act as electron donors to B_{12} icosahedra, which according to Longuet-Higgins and Roberts³⁰ require two additional electrons for stability. Since the interstitial openings are well-defined, it would appear a simple matter to define the stoichiometric compositions of \mathbf{B}_{12} borides in terms of full occupancies of the interstitial sites. Unfortunately, as mentioned earlier, derivatives of B_{12} borides display, in general, a variable composition, which seldom can be explained in a simple manner. Perhaps the most serious complication is due to the ease with which higher borides form solid solutions between two members of an isotypic series. Some of the problems that have been observed and their consequences with respect to assignment of stoichiometry are discussed below.

CRYSTAL CHEMISTRY OF B12 BORIDES

1/4CCPr (a-rhombohedral boron) derivatives

The 1/4CCPr series is based on a cubic closest packing of icosahedral units (see Figure 2) with a simple rhombohedral unit cell. The crystal chemistry

and	
nits)	
B12 U	
A ()	
Sf 5.1	
oheres (
size s	
equal :	
ils of	
mode	
acking	
id mo	
ed fre	eter
ulate	liam
e calc	hits) c
those	ur or
pue	A (B
rides	10.2
्रि	
in B,	
1ed	
ohser	
Suoi	
mens	
ينك الغ	
mit ce	
n of u	
risor	
npa	
Ŭ.	
ahle I	

					0				
		Calculated					-		
Packing model designation	cl.A)	$P(\mathbf{A})$	с1. А)	Observed uLA)	(F.)(/	d 4)	Conventional formula	Structural formula	Ref.
A D D D D D D D D D D D D D D D D D D D				7.408			B ₁ .Zr		
				7.404			B ₁₂ Lu		
				7.473			B		
	r t			0/+//			8,21m		c 3
	1		j					(B ₁₂)4.W4	¢, ۷
				1 500					
				7.501			B, D,		
CCPt (cubo-octahedra)	5.1		С! Г:	5.22	7.3	7.35	B _{1.2} Sc	(B ₁₂) ₂ M ₂	7
and an and a second				4.908	second and a second second second second	12.567	B	B.,	10
	Thexago	nal		5.37		12.31	B.,O	1	
	present	tation)		5.984		11.850	B, P	$\mathbf{B}_{t},\mathbf{X},$	11. 12
	•			6.142		11.892	B, As	1	
1 +CCPr	1.2		12.50	5.67		12.19	B ₁ ,C,	B ₁ ,C,B	13
(B,icosahedra)				5.63		12.29	B, C, AI	B.,C.Y	4
				5.65		12.35	B, C,Si	8	
				6.330		12.736	B, Si	$(\mathbf{B}_1, \underline{A}_n \mathbf{S} \mathbf{i}_n) \mathbf{S} \mathbf{i}_n$	15
				5.60		12.07	B_C	$(\mathbf{B}_{1,2},\ldots,\mathbf{C}_{n})\mathbf{C}_{2}\mathbf{B}$	14
				5.642		12.367	B ₄₀ C ₄ AI	$(\mathbf{B}_{12}, \mathbf{C}_{a})(\mathbf{C}_{2}, \mathbf{C}_{b})(\mathbf{B}, \mathbf{A}),$	39
2HCPo (B _{1,2} -icosahedra)	8.8	8.3	5.1	8.89	9.10	5.69	C ₄ AlB ₂ ,	(B ₁₂) ₄ C ₈ (AiB) _n	5, 37

الممادنسم سيماما	_	calculated		Ohsarijad			Conventional	Structural	
r acking mouel designation	a(A)	b(A)	c(A)	a(A)	$b(\mathbf{A})$	c(A)	formula	formula	Ref.
2TCP (B ₁₂ -icosahedra)	<u>%</u>		5.1	8.75 8.82 8.80 8.986		5.06 5.09 5.08 5.078	B B ₄₈ C ₂ Al ₃ (800°C) B ₁₂ Be B ₂₅ Ni	$\begin{array}{c} (B_{12})_4B_2\\ (B_{12})_4C_2AI_4\\ (B_{12})_4B_4\\ (B_{12})_4B_2\\ (B_{12})_4B_2NI_2 \end{array}$	16 5, 17 18 19
4TCP (B ₁₂ -icosahedra)	8.80		10.2	8.75		10.15	B	$(\mathbf{B}_{12})_{8}\mathbf{B}_{4}$	20
4TCPo (B ₁₂ -icosahedra)	6.2 12.5	12.5 12.5	10.2 5.1	6.17 12.34	12.63 12.63	10.16 5.08	B ₄₈ C ₂ Al ₃	4	17
4HPo (B ₁₂ -icosahedra)	10.2	8.8	5.1	10.313 10.298	8.115 8.415	5.848 5.847	MgAIB ₁₄ NaB ₁₅	$\begin{array}{l} (B_{12})_4B_8Mg_4Al_4 \\ (B_{12})_4B_8B_4Na_4 \end{array}$	21 38
1/4CCPvr (B ₈₄ -polyhedra)	10.2		25.0	10.944 10.98 11.13		23.811 23.82 23.83	B B ₃₂ Al B ₁₄ Si	$(\mathbf{B}_{84}) (\mathbf{B}_{10})_2 \mathbf{B}$ $(\mathbf{B}_{84}) (\mathbf{B}_{10-a} \mathbf{L}_a) \mathbf{X}$	22
1/2CCPvt (B ₈₄ -polyhedra)	10.2		14.4	10.16 10.12 10.16		14.28 14.14 14.28	αAlB ₁₂ B BeB ₆		24 25 26
2HCPvo (B ₈₄ -polyhedra)	16.6	17.6	10.2	16.56	17.53	10.16	γ -AlB ₁₂		27

Figure 2. Twelve atoms occupying vertices of an icosahedron.

Figure 3. Interatomic distances in $(\mathbf{B}_{1+5}\mathbf{C}_{0,5})\mathbf{C}_2\mathbf{B}$.

of these derivatives has been reviewed earlier³¹. Since that time little new work has been carried out to clarify the nature of the interstitial atoms present in boron subarsenide, boron suboxide and boron subsulphide. The existence of a ternary system $B_{12}C_2Al$ has been reported independently and almost simultaneously by Lipp and Roeder¹⁴ and by our laboratory³². Lipp and Roeder¹⁴ have also reported a new composition $B_{12}C_2S_1$ which appears to be closely related to $B_{12}C_2Al$. A detailed structure analysis of an aluminium borocarbide of composition AlC4B40 has been reported by Neidhard et al.³⁹. In our programme we have carried out a careful x-ray analysis of single crystals of rhombohedral boron silicide $(SiB_{1,1})$ and boron carbide $(B_{4-6.5})$. The boron silicide analysed for a composition of SiB₃ and the structure was found to be in agreement with the findings of Magnusson and Brosset³³ where two silicon atoms are accommodated interstitially and lie along the threefold axis of the rhombohedral cell. The rest of the silicon partially substitutes for the icosahedral boron atoms at the bottom and top of the icosahedral triangles. This composition is consistent with a $(B_{12} - aSi_a)Si_2$ stoichiometry where observed values of a vary between 1.0 and 1.5. Work on boron carbide crystals indicates that this compound resembles

531

SiB₃ with carbon also substituting for icosahedral boron atoms but in a different position (see *Figures 3* and 4). The interstitial opening accommodates two carbon atoms and one boron atom in a C—B—C arrangement. Existence of C—B—B linear and C—Al—B non-linear chains has been reported by Neidhard *et al.*³⁹ for AlC₄B₄₀ [or (B₁₂)(C_{2-x}B_x)B_{1-n}Al_n]. Thus the composition of aluminium boron carbide may be written as $(B_{12-a}C_a)(C_{2-x}B_x)(B_{1-n}Al_n)$. These results lead to the conclusion that the commonly used formula of B₄C represents a solid solution of (B₆C₆)C₂B and (B₁₂)C₂B. Therefore, B₁₂C₂B is the only stoichiometric compound in the rhombohedral phase of the boron–carbon system which has been observed³⁴. B₁₂C₂Al and B₁₂C₂Si may also fall into this group and could be written as (B₁₋₁Al)C₂B and (B₁₋₁Si)C₂B, respectively. Thus, the compounds of the 1/4CCPr series can be designated by a general formula (B_{12-a}L_a)(X_{2-x}B_x)(B_{1-n}Y_n). Interatomic distances in boron carbide and boron silicide are compared in *Figures 3* and 4.

2TCP (α-tetragonal boron) derivatives

The 2TCP derivatives are based on a tetragonal arrangement of B_{12} isosahedra which has differently oriented icosahedra at centres of all faces (see Figure 5). This isotypic series includes tetragonal boron, BeB_{12}^{18} , NiB_{25}^{19} , $C_2Al_3B_{48}$ (high temperature phase)¹⁷ and $AlBeB_{24}^{40}$ and was briefly discussed in an article by H. J. Becher³⁵. In earlier work it had been shown that in tetragonal boron the two interstitial boron atoms were located in a twofold position¹⁶, even though two fourfold and one twofold openings were also available. In the case of $AlBeB_{24}$, it has been shown⁴⁰ that aluminium atoms are present in a fourfold position. With NiB₂₅ it has been

Figure 5. Structure of tetragonal boron as viewed in the direction of the c axis. Two alternative unit cells are shown. The upper one has non-identical icosahedra at the centres of all faces and corresponds to the 2TCP model classification.

suggested¹⁹ that the interstitial nickel and boron atoms occupy selectively two different sets of twofold interstitial positions in the structure. In the case of $C_2Al_3B_{48}$, the high temperature form is obviously a derivative of the 2TCP model. This was recently confirmed by Mattes *et al.*³⁶. It is suggested that this series corresponds to a $(B_{12})_4C_2Al_4$ stoichiometry where the aluminium position is partially defective. In view of the above information a general formula for the 2TCP derivatives may be expressed as $(B_{12})_4X_2Y_2Z_4$.

It is interesting to note the ease with which these systems can convert from one to the other. Thus, Becher found that in reaction of BeB_{12} with BCl_3 the four Be atoms are removed from the polyhedral framework while two boron atoms are inserted, apparently in different positions¹⁸.

1/4CCPvr (β-rhombohedral boron) derivatives

It has been suggested that B_{14} Si and the so-called 'monoclinic' AlB_{12} were isotypic with β -rhombohedral boron²⁹. This structure is based on a cubic closest packed arrangement of B_{84} units²² (see *Figure 6*). There is a similarity

Figure 6. Ideal arrangement of boron atoms in the B_{84} polyatomic unit. The arrangement consists of a central B_{12} icosahedron and 12 pentagonal pyramids centred radially at the vertices of the central icosahedron. The 60 peripheral atoms occupy vertices of a truncated icosahedron (12 pentagonal and 20 hexagonal faces).

in the stacking arrangement of the B_{84} units in this isotypic series and of the B_{12} unit in the α -rhombohedral boron series. In addition, the C—B—C interstitial chain in boron carbide bears a formal resemblance to the interstitial B_{10} —B— B_{10} group in β -rhombohedral boron. In the case of B_{14} Si and monoclinic AlB₁₂ it is suggested that the interstitial group consists of $(B_7 Si_3)$ —Si— $(B_7 Si_3)$ and $(B_6 Al_4)$ —Al— $(B_6 Al_4)$, respectively²³. A formulation for this isotypic series consistent with the above data would be $B_{84}(B_{10-a}N_a)_2X$. In this approach a group of atoms such as B_{10} is considered as an interstitial unit.

2HCPo derivatives

Only one member of this type has been described, namely $C_4AlB_{24}^5$. This compound is based on a hexagonal closest packing of B_{12} units with an orthorhombic symmetry. The unit cell contains four B_{12} icosahedra. In C_4AlB_{24} , the eight carbon atoms occupy an eightfold position while two aluminium atoms appear to be randomly distributed among the two fourfold and a sixteenfold positions⁵.

It should be mentioned that C_4AlB_{24} converts on heating to a rhombohedral form of the 1/4CCPr series, the formula of which may be written as $B_{12}C_2Al_{0.25-0.75}^{32}$. This observation led Hoard and Hughes²³ to propose on the basis of stereochemical considerations the presence of a C—B—C chain in both the orthorhombic and the rhombohedral forms and then to reformulate the composition of C_4AlB_{24} as C_4AlB_{26} . In our work, we have observed compositions with a higher boron content (C_4AlB_{25}), and subsequent simple crystal work by Perrotta *et al.*³⁷ leads to the approximate composition of C_4AlB_{26} . Accordingly four interstitial boron atoms could be present in the unit cell of this structure leading to the formulation $(B_{12})_4C_8B_4Al_n$ and the series may be described by the general formula $(B_{12})_4X_8Y_4Z_n$.

4HPo derivatives

The compound, MgAlB₁₄ with the structural formula of $(B_{12})_4Mg_4Al_4B_8$ was first reported in this series²¹. The structure consists of a simple hexagonal arrangement of icosahedra with orthorhombic symmetry. The unit cell contains four B₁₂ groups, eight additional boron atoms and up to eight metal atoms (see *Figure 7*). The interstitial boron atoms are accommodated in an eightfold position while magnesium and aluminium atoms are distributed among two fourfold positions. Both metal positions have been found to be partially occupied. The structure analysis indicated a tendency for some Al to be randomly distributed among the Mg positions. Another member of this series, NaB₁₅ was reported by Naslain and Kasper³⁸, with the structural formula (B₁₂)₄B₄Na₄B₈. Assuming full occupancy of interstitial sites the general stoichiometry of (B₁₂)₄X₄Y₄Z₈ may be assigned to this series.

It has been found that all of the higher borides can be classified as derivatives of simple packing arrangements of B_{12} units. The stoichiometries within a given series can be expressed by a general formula denoting the interstitial atoms as X, Y and Z (each of which can assume values from zero to unity) and the substitutional icosahedral boron positions as L. A general description for stoichiometries of the five isotypic series may be listed as follows:

 $\begin{array}{ll} 1/4\text{CCPr} & \text{Derivatives } (B_{12-a}L_a)(X_{2-x}B_x)(B_{1-n}Y_n)\\ 2\text{TCP} & \text{Derivatives } (B_{12})_4X_2Y_2Z_4\\ 1/4\text{CCPvr} & \text{Derivatives } B_{84}(B_{10-a}L_a)_2X\\ 2\text{HCPo} & \text{Derivatives } (B_{12})_4X_8Y_4Z_n\\ 4\text{HPo} & \text{Derivatives } (B_{12})_4X_4Y_4Z_8 \end{array}$

Figure 7. A layer of icosahedra in MgAlB₁₄ with extra-icosahedral atoms. The atoms shown fall within $x = \pm \frac{1}{4}$.

LOWER BORIDES

Packing of M₄ tetrahedra

The polyatomic groups discussed in the preceding sections have a unique feature of appearing as closed cages clearly separated from each other. Separation of units is particularly pronounced when the external bonds of the polyatomic group are directed from the atoms away from the centre of the group. With the tetrahedral groups this is seldom the case and a complication arises from the fact that when two tetrahedra are in contact, the space between them is likely to be tetrahedral also. This coincidence results in alternative and apparently equivalent choices of tetrahedral units. Yet, one of the advantages of presenting a structure in terms of arrangements of polyatomic units is the clarity with which the structure can be visualized. Namely, the spatial relationship of atoms within the group is described separately, simplifying the description of the arrangements of these groups into periodic arrays. In the following discussions, this concept is utilized for the structures involving M_4 and $M_2B_2^*$ groups to simplify understanding, enable a comparison and

^{*} M_4 represents a group of four metal atoms in a tetrahedral arrangement. M_2B_2 represents a similar group consisting of two metal and two boron atoms.

bring out similarities between compounds that may otherwise appear unrelated.

It has been observed⁴¹ that M_4 tetrahedra presented as separate units often tend to pack in arrangements with ten closest neighbours. Tetragonal close packed and orthorhombic close packed examples are illustrated in *Figure* 8 and *Figure* 9 for Fe₂B and Mn₄B type structures, respectively. *Figure* 8 shows a comparison of the usual presentation of the Fe₂B structure and its interpretation in terms of close packed tetragonal arrangement of the tetrahedral metal groups. A three-dimensional array of M₄ groups is also shown to demonstrate the ease with which the atomic positions can be visualized. As may be observed, the M₄ tetrahedral groups form a continuous framework of M₄ tetrahedra where each M₄ unit has ten identical neighbours in close contact. The square antiprismatic openings present between the units accommodate pairs of boron atoms.

Figure 8. Atomic arrangement in the Fe₂B structural type. Circles represent metal atoms and crosses represent boron atoms. (a) Conventional presentation of this structure projected on the (001) plane. Metal atoms are at $z = \frac{1}{4}$ (heavy circles) and $z = \frac{3}{4}$ (light circles). Boron atoms are at z = 0 and $z = \frac{1}{2}$; (b) Interpretation of the same projection in terms of tetrahedral groups of metal atoms; (c) Schematic three-dimensional view of the tetrahedral groups (boron atoms are not shown).

The structure of Mn_4B -type compounds, shown in Figure 9 is based on orthorhombic close packed arrangement of metal tetrahedra. Though both the above structures have closest packed layers of tetrahedral groups, they [as illustrated in Figures 1(a) and 1(f)] differ in the manner in which the layers are stacked. In the two types of packing, the unit cell dimensions can be derived by assigning the M_4 group a quasi-spherical radius ($R = 2r \sqrt{2}/\sqrt{3}$) and calculating the unit cell dimension by use of formulas: $a = 2R \sqrt{2}/\sqrt{3}$ and c = 2R for tetragonal close packing and $a = 2R \sqrt{3}$, b = 2a and c = 2R, for the orthorhombic close packing. Calculated and observed unit cell dimensions for this type of structure are compared in Tables 2 and 3.

Because simple dimensional analysis of these structures leads to tetragonal close packing with two structural units for Fe_2B and orthorhombic close packing with eight structural units for Mn_4B , the eight metal atoms in the former and the 32 metal atoms in the latter can be divided into groups of four atoms even before the structural units are identified as tetrahedral groups.

The boron atoms in both above structures are accommodated in the interstitial openings between tetrahedra. The presence of these atoms does not significantly affect the intertetrahedral distances. Consequently, in the calculation of the unit cell dimensions the role of the interstitial atoms has been

neglected. Though the presence of these atoms contributes to the stability of a particular phase, compounds of this type often have a variable composition due to partial occupancy of the interstitial sites. This is clearly the case in Mn_4B and Cr_4B . If all the openings were fully occupied with boron atoms the composition would correspond to the formula Mn_2B and Cr_2B .

Figure 9. Structure of Mn_4B interpreted in terms of tetrahedral metals groups.

M₂B₂-tetrahedra

When the polyatomic group contains two metal and two boron atoms the resulting tetrahedra are of lower symmetry than the M_4 groups described above. The lower symmetry of this group simplifies the selection of the structural unit as it reduces the number of equivalent choices for the polyatomic group. Thus, using a suitable selection of the tetrahedral groups interesting similarities can be observed among otherwise diverse structures⁴². Such comparison is shown in *Figure 10*(a), (b) and (c) comparing the structures of

	Sym	metry: e group:	tetragonal I4/mcm			
			Unit-cell d	limensions		
	Metallic		1		2	
Compound	r _m	Calc.	Obs.	Calc.	Obs.	Reference
	Å	Å	Å	Å	Å	
Cr ₂ B	1.28	5.12	5.18	4.10	4.316	43
Mn ₂ B	1.31	5.24	5.15	4.28	4.208	44
Fe ₂ B	1.27	5.08	5.15	4.14	4.249	45
Co ₂ B	1.26	5.05	5.016	4.12	4.22	46
Ni ₂ B	1.24	4.97	4.988	4.06	4.244	47
Mo ₂ B	1.40	5.60	5.534	4.58	4.735	48
W, B	1.40	5.60	5.564	4.58	4.740	49
Ta ₂ B	1.46	5.84	5.774	4.77	4.864	50

Table 2. Comparison of calculated and observed unit-cell data in the Fe₂B-type borides Packing model: tetragonal close packing

 Fe_2B , V_3B_2 and YB_4 . As may be observed, the V_3B_2 structural type can be derived from the Fe₂B structure type by replacing a metal pair in the tetrahedra with two boron atoms and replacing the interstitial boron pair by a single metal atom. Furthermore, when the single metal atom is replaced by a boron octahedron the resulting atomic arrangement is that of YB₄ structural type. In all three structures the structural framework is based on tetragonal close packing arrangement of the tetrahedron units. The extrapolyhedral atoms are thus regarded as interstitial. The occupancy of this interstitial position is compared in Figure 11.

The M_2B_2 units are not quasi-spherical and the tetragonal close packing arrangement assigned to the above structures is based on analogy with the Fe₂B structure rather than on a dimensional analysis of their unit cells⁴². For this and other reasons that will become apparent the concept of packing

14010 5. 0		Packing Symmetr Space gr	model : ry : oup :	orthorhombic orthorhombic Fddd	close pac	king	,,	
/				Unit-cell d	limensions	;*		
	Metallic	a	1	l	b	(2	_
Compound	$r_{\rm m}$	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Ref.
Mn₄B Cr₄B	Å 1.31 1.28	Â 14.84 14.57	Å 14.53 14.71	A 7.42 7.28	Å 7.293 7.38	A 4.28 4.19	Å 4.209 4.26	44 43

Table 3 Comparison of calculated and observed unit-cell data in the Mn. B-type borides

*In this table the assignment of the a and b axes was reversed due to a non-conventional assignment of the axis by the original workers

Figure 10. Comparison of the Fe₂B, V_3B_2 and YB_4 structural types. Large circles represent metal atoms and small circles represent boron atoms. Dotted squares indicate interstitial openings. (a) Fe₂B structural type. A body-centred arrangement of M₄ tetrahedra. Boron atoms are placed interstitially; (b) V_3B_2 structural type. The same spatial arrangement of tetrahedra (M₂B₂ in this case) as in (a) but the central and corner tetrahedra are differently oriented. Interstitial openings accommodate metals atoms in this structure; (c) YB₄ structural type. The same arrangement of M₂B₂ tetrahedra as in (b). Interstitial openings accommodate up to six boron atoms in the form of octahedra.

applied to some other M_2B_2 structures would be of little useful significance. Yet, as mentioned earlier, the description of atomic arrangements in terms of the M_2B_2 groups is utilized to bring out similarities among structures and demonstrate widespread existence of the M_2B_2 tetrahedral configuration.

In the V_3B_2 and YB_4 type structures shown above the M_2B_2 tetrahedra form chains along the *c*-axis direction by alternating boron and metal pairs

Figure 11. Comparison of the interstitial sites in (a) Fe_2B_1 (b) V_3B_2 and (c) YB_4 . In Fe_2B the interstitial sites accommodate two boron atoms along the fourfold axis (per unit-cell length). In V_3B_4 and YB_4 , the M_2B_2 tetrahedra provide a larger opening which enables accommodation of four additional boron atoms in YB_4 or a single metal atom in V_3B_2 .

Figure 12. Different ways of stacking the M₂B₂ layers. (All figures show the view of the MB—MB chains only.) (a) MoAlB structural type. M₂B₂ tetrahedral layers are separated by two layers of aluminium atoms; (b) Mn₂AlB₂ structural type. M₂B₂ tetrahedral layers are separated by one layer of aluminium atoms; (c) CrB structural type. There is no metal interlayer between layers of the M₂B₂ tetrahedra.

 $(M_2 - B_2 \text{ type chains})$. In many structures the M_2B_2 tetrahedra are also joined in a perpendicular direction forming the MB-MB type chains illustrated in *Figures 12* and *14*(a). The M_2B_2 tetrahedra joined simultaneously in two directions form layers which may be variously stacked to result in a great variety of structures. In *Figure 12*(a), it is shown how the M_2B_2 layers may be separated by two layers of metal atoms as is the case in MoAlB type

Figure 13. Comparison of MB and M₃B₄ structural types. (a) CrB structural type. Separated M₂B₂ tetrahedral layers; (b) Ta₃B₂ structural type. Two M₂B₂ layers condensed into a double (M₃B₄) layer; (c) AlB₂ structural type. Three-dimensional network of the M₂B₂ groups.

Figure 14. Comparison of MoB and IrB structural types. (a) MoB structural type (tetragonal). Separated M_2B_2 layers are rotated by 90° from one layer to another. First row illustrates the M_2 —B₂ type layers while the second row illustrates the MB—MB type layers; (b) IrB structural type. Three-dimensional network of M_2B_2 groups involving rotation of the M_2B_2 units. This may be compared with the AlB₂ structural type [Figure 13(c)] where the groups are not related.

structures. In Mn_2AlB_2 type structures [Figure 12(b)] the M_2B_2 layers are separated by one layer of metal atoms and in the CrB type structure [Figure 12(c)] there is no interlayer of metal atoms. Furthermore, two M_2B_2 groups may be condensed into a larger group by sharing a metal atom. This may result in an M_3B_4 composition [Figure 13(b)] while still further condensation of tetrahedra leads eventually to the AlB₂ structure shown in Figure 13(c).

In the above examples all the structures have the same orientation of tetrahedral M_2B_2 groups in all the layers. In some structures such as MoB (tetragonal form) the units are rotated by 90° from one layer to another as shown in *Figure 14*(a). Condensation of tetrahedra may occur in this case also and this leads to the IrB type structure illustrated in *Figure 14*(b). The M_2B_2 tetrahedra appear also in a few other structures. The FeB structural type shown in *Figure 15* is an additional example.

The widespread occurrence of the M_2B_2 configuration (occurs in over 70 per cent of all known lower borides) indicates its stability. Depending largely upon the particular metal atomic size one or the other structure may be preferred, but the M_2B_2 configuration appears persistently for metals within radius range from 1.24 Å to 1.80 Å.

The stability of the M_2B_2 groups may be taken as an indication of strong internal bonding between the atoms of this group. Accordingly, assuming that the atoms of the M_2B_2 groups are in close contact and that, consequently,

Figure 15. Structure of FeB interpreted in terms of M_2B_2 -tetrahedra.

boron pairs are always at a right angle with respect to the metal pairs, the geometry of the chains is defined and the periods of the M_2B_2 chains and the MB—MB chains [see *Figure 13*(a) for illustration] can be calculated by the following formulas:

$$\mathbf{M}_2 - \mathbf{B}_2 \text{ period} = \sqrt{8r_m r_h} \tag{1}$$

$$MB-MB \text{ period} = 4r_m r_b / \sqrt{r_m^2 + r_b^2}$$
(2)

where $r_{\rm m}$ and $r_{\rm b}$ represent the atomic radii for metal and boron atoms respectively. The calculated and observed values for various structures are compared, with excellent agreement, in *Tables 4* and 5.

As may be observed from equation (2) the MB--MB period becomes equal to the metal diameter $(2r_m)$ when $r_m/r_b = \sqrt{3}$. In that case the metal atoms form closest packed layers and the consequence is the AlB₂ type structure [see *Figure 13*(c)] with hexagonal symmetry. With the boron atom radius of 0.9 Å, the metal radius ideal for this structure is 1.56 Å. In fact, as shown in *Table 6*, this structure occurs with metals with atomic radii from 1.32 Å to 1.80 Å. In order to comply with the above r_m/r_b requirement both boronboron and metal-metal distances undergo adjustments by up to ± 8 per cent

			Direction of chain	Chain	period	
Structural type	Compound	r _m	(axis)	Calc.	Obs.	Ref.
		Å		Å	Å	
	TaB	1.46	с	3.06	3.16	50
	NbB	1.46	с	3.06	3.17	50
CrB	MoB	1.40	с	3.03	3.08	48
(Orthorhombic)	WB	1.40	с	3.03	3.06	55
	VB	1.36	С	3.00	2.97	56
	CrB	1.35	с	2.99	2.93	54
	NiB	1.24	С	2.91	2.93	51
МоВ	MoB	1.40	а	3.03	3.11	49
(Tetragonal)	WB	1.40	а	3.03	3.12	49
FeB	FeB	1.27	b	2.93	2.94	51
(Orthorhombic)	MnB	1.31	b	2.97	2.98	44
	CoB	1.26	b	2.93	3.04	51
	TiB	1.47	Ь	3.07	3.06	52
	Ta ₃ B ₄	1.46	с	3.06	3.13	50
Ta ₃ B₄	Nb ₃ B ₄	1.46	С	3.06	3.14	50
(Orthorhombic)	V ₃ B ₄	1.36	с	3.00	2.99	53
	Cr ₃ B ₄	1.35	с	2.99	2.95	54
	Mn_3B_4	1.31	с	2.97	2.96	44

Table 4. Calculated and observed periods in the MB-MB type tetrahedral chains

Table 5. Calculated and observed periods in the M_2 -- B_2 type tetrahedral chains

			Direction	Chain	period	_
Structural type	Compound	r _m	(axis)	Calc.	Obs.	Ref.
		Å		Å	Å	
	TaB	1.46	а	3.24	3.28	50
	NbB	1.46	а	3.24	3.30	50
CrB	MoB	1.40	а	3.18	3.16	48
(Orthorhombic)	WB	1.40	а	3.18	3.19	55
	VB	1.36	а	3.13	3.06	56
	CrB	1.35	а	3.12	2.97	54
	NiB	1.24	а	2.98	2.97	51
MoB	MoB	1.40	а	3.18	3.11	49
(Tetragonal)	WB	1.40	а	3.18	3.12	49
Ta ₃ B ₄	Ta ₃ B ₄	1.46	а	3.24	3.29	50
(Orthorhombic)	Nb ₃ B ₄	1.46	а	3.24	3.30	50
	V_3B_4	1.36	а	3.12	3.03	53
	Cr_3B_4	1.35	а	3.12	2.98	54
	Mn ₃ B ₄	1.31	а	3.07	3.03	44
V ₃ B ₂	V_3B_2	1.36	с	3.12	3.03	57
(Tetragonal)	Nb ₃ B ₂	1.46	с	3.24	3.28	57
· <u> </u>	Ta ₃ B ₂	1.46	с	3.24	3.29	57

Compound				
$r_{\rm m}/r_{\rm b} > \sqrt{3}$	r _m	Cale.	Obs.	Ref.
	Å	Å	Å	
UB,	1.80	3.14	3.99	61
YB,	1.80	3.30	3.84	62
GdB ₂	1.80	3.31	3.94	63
TbB ₂	1.77	3.28	3.86	63
DyB_2	1.77	3.29	3.84	63
HoB ₂	1.76	3.27	3.81	63
ErB ₂	1.75	3.28	3.79	63
LuB,	1.74	3.25	3.74	64
ScB ₂	1.62	3.15	3.52	65
MgB_2	1.60	3.08	3.52	66
ZrB_2	1.60	3.17	3.53	51
HfB ₂	1.58	3.17	3.47	67
$r_{\rm m}/r_{\rm b} < \sqrt{3}$				
TiB ₂	1.47	3.03	3.29	51
NbB ₂	1.46	3.09	3.31	51
TaB ₂	1.46	3.09	3.24	51
AgB ₂	1.44	3.00	3.24	58
AuB_2	1.44	3.14	3.52	58
AlB ₂	1.43	3.01	3.26	59
MoB ₂	1.40	3.06	3.10	51
VB ₂	1.36	3.01	3.06	51
CrB ₂	1.35	2.97	3.07	51
OsB ₂	1.34	2.98	2.87	60
RuB ₂	1.32	2.85	2.86	60

Table 6. Calculated and observed unit-cell dimensions in the AlB₂ type isotypic series

of their normal values. As may be expected from equation (2) only those metals that have atomic diameter smaller than 1.56 Å form chain type M_2B_2 layers as presented in *Tables 4* and 5.

REFERENCES

- ¹ E. Weintraub, Trans. Amer. Electrochem. Soc. 16, 165 (1909).
- ² H. Biltz, Ber. Dtsch. Chem. Ges. 41, 2634 (1908) and 43, 297 (1910).
- ³ J. A. Kohn, G. Katz and A. A. Giardini, Z. Kristallogr. 111, 54 (1958).
- ⁴ V. I. Matkovich, J. Economy and R. F. Giese Jr, J. Amer. Chem. Soc. 86, 2337 (1964).
- ⁵ H. Moissan, CR Acad. Sci., Paris, 118, 556 (1899).
- ⁶ V. I. Matkovich, R. F. Giese Jr and J. Economy, Z. Kristallogr. 122, 116 (1965).
- ⁷ V. I. Matkovich and J. Economy, Z. Kristallogr. 126, 182 (1968).
- ⁸ S. LaPlaca, I. Binder and B. Post, J. Inorg. Nucl. Chem. 18, 113 (1960).
- ⁹ V. I. Matkovich, J. Economy, R. F. Giese Jr and R. Barrett, Acta Cryst. 19, 1056 (1965).
- ¹⁰ B. F. Decker and J. S. Kasper, Acta Cryst. 12, 503 (1959).
- ¹¹ V. I. Matkovich, J. Amer. Chem. Soc. 83, 1804 (1961).
- ¹² S. LaPlaca and B. Post, Planseeher. Pulvermet. 9, 109 (1961).
- ¹³ R. D. Allen, J. Amer. Chem. Soc. 15, 3582 (1953).
- ¹⁴ A. Lipp and M. Roeder, Z. Anorg. Allgem. Chem. 343, 1 (166) and 344, 225 (1966).
- ¹⁵ V. I. Matkovich, Acta Cryst. 13, 679 (1960).
- ¹⁶ J. L. Hoard, R. E. Hughes and D. E. Sands, J. Amer. Chem. Soc. 80, 4506 (1958).
- ¹⁷ V. I. Matkovich, R. F. Giese Jr and J. Economy, Z. Kristallogr. 122, 108 (1965).
- ¹⁸ H. J. Becker, Z. Anorg. Allgem. Chem. 306, 266 (1960).
- ¹⁹ B. F. Decker and J. S. Kasper, Acta Cryst. 13, 1030 (1960).

- ²⁰ L. Gorski, Phys. Status Solidi, 9, K 169 (1965).
- ²¹ V. I. Matkovich and J. Economy, Acta Cryst. B26, 616 (1970).
- ²² R. E. Hughes, C. H. L. Kennard, D. B. Sullinger, H. A. Weaklien, D. E. Sands and J. L. Hoard, J. Amer. Chem. Soc. 85, 361 (1963).
- ²³ R. F. Giese Jr, J. Economy and V. I. Matkovich, Z. Kristallogr. 122, 144 (1965).
- ²⁴ J. A. Kohn and D. W. Echart, Analyt. Chem. 32, 296 (1960).
- ²⁵ C. P. Talley, S. LaPlaca and B. Post, Acta Cryst. 13, 271 (1960).
- ²⁶ D. E. Sands, C. F. Cline, A. Zalkin and C. L. Hoening, Acta Cryst. 14, 309 (1961).
- ²⁷ J. A. Kohn and D. W. Echart, Z. Kristallogr. 116, 134 (1961).
- ²⁸ J. L. Hoard and R. E. Hughes, Chapter in *The Chemistry of Boron and Its Compounds*, 25-154 ed. E. L. Muetterties, Wiley: New York (1967).
- ²⁹ V. I. Matkovich and J. Economy, Electron Technology (Warsaw). 3, 167 (1970).
- ³⁰ H. C. Longuet-Higgins and M. De V. Roberts, Proc. Roy. Soc. A230, 110 (1955).
- ³¹ J. Economy, V. I. Matkovich and R. F. Giese Jr, Z. Kristallogr. 122, 248 (1965).
- ³² R. F. Giese Jr, J. Economy and V. J. Matkovich, Acta Cryst. 20, 697 (1966).
- ³³ B. Magnusson and C. Brosset, Acta Chem. Scand. 16, 449 (1962).
- ³⁴ V. I. Matkovich and J. Economy, *Boron* by the Academy of Sciences of the USSR (in Russian) (*Proceedings* of the Symposium on Boron in Tbilisi, USSR) (1972).
- ³⁵ H. J. Becher, Chapter in Boron, Vol. II, ed. G. K. Gaule. (See ref. 34).
- ³⁶ R. Mattes, H. J. Becher, H. Rethfield and K. Krogman, in press, Boron. (See ref. 34).
- ³⁷ A. J. Perrotta, W. D. Townes and J. A. Potenza, Acta Cryst. B25, 1223 (1969).
- ³⁸ R. Naslain and J. S. Kasper, J. Solid State Chem. 1, 150 (1970).
- ³⁹ V. H. Neidhard, R. Mattes and H. Becker, Acta Cryst. 326, 315 (1970).
- ⁴⁰ J. K. Korgman and H. J. Becker, Z. Anorg. Allgem. Chem. 392, 197 (1972).
- ⁴¹ V. I. Matkovich and J. Economy, Z. Kristallogr. 126, 181 (1968).
- ⁴² R. I. Giese Jr, V. I. Matkovich and J. Economy, Z. Kristallogr. 122, 423 (1965).
- ⁴³ F. Bertaut and P. Blum, CR Acad. Sci., Paris, 236, 1055 (1953).
- 44 R. Kiessling, Acta Chem. Scand. 4, 146 (1950).
- ⁴⁵ T. Bjurstrom and H. Arnfelt, Z. Phys. Chem. 34, 469 (1929).
- ⁴⁶ T. Bjurstrom, Ark. Kemi Mineral, Geol. 11Å (1933) No. 5, 12 pp.
- ⁴⁷ Z. H. Anderson and R. Kiessling, Acta Chem. Scand. 4, 160 (1950).
- 48 R. Steinitz, I. Binder and D. Moscowitz, J. Metals, 4, 983 (1952).
- ⁴⁹ R. Kiessling, Acta Chem. Scand. 1, 893 (1947).
- ⁵⁰ R. Kiessling, Acta Chem. Scand. 3, 603 (1949).
- ⁵¹ W. B. Pearson, Handbook of Lattice Spacing and Structures of Metals and Alloys, Pergamon: New York (1958).
- ⁵² B. F. Decker and J. S. Kasper, Acta Cryst. 7, 77 (1954).
- 53 D. Moscowitz, J. Metals, 8, 1325 (1956).
- 54 R. Kiessling, Acta Chem. Scand. 3, 595 (1949).
- ⁵⁵ B. Post and F. W. Glaser, J. Chem. Phys. 20, 1050 (1952).
- ⁵⁶ H. Blumenthal, J. Amer. Chem. Soc. 74, 2942 (1952).
- ⁵⁷ H. Nowotny and A. Wittman, Monatsh. 89, 220 (1958).
- 58 W. Obrowski, Naturwiss. 48, 428 (1961).
- ⁵⁹ E. J. Felten, J. Amer. Chem. Soc. 78, 5977 (1956).
- 60 C. P. Kempter and R. J. Fries, J. Chem. Phys. 34, 173 (1951).
- ⁶¹ L. Brewer, D. L. Sawyer, D. H. Templeton and C. H. Dauben, J. Amer. Ceram. Soc. 34, 173 (1951).
- ⁶² K. A. Geschneider, Rare Earth Alloys, Van Nostrand: New York (1961).
- ⁶³ B. Post, 'Refractory binary borides', in Roy G. Adams, Ed. Boron, Metallo-boron Compounds and Borones, Interscience: New York (1964).
- ⁶⁴ M. Przybylsva, A. H. Reddoch and G. H. Ritter, J. Amer. Chem. Soc. 85, 407 (1963).
- 65 N. N. Zhuravlev and A. A. Stepanova, Kristallografiya, 3, 76 (1958).
- 66 V. Russel, R. Hirst, F. A. Kanda and A. J. King, Acta Cryst. 6, 870 (1953).
- 67 B. Post. F. W. Glaser and D. Moscowitz, Act. Met. 2, (1954).