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ABSTRACT
The application of composite theories to relationships between mechanical
properties and structure in semicrystalline polymers is considered. The
approach is illustrated by recent results from the author's laboratories for
three classes of polymer morphology, namely spherulitic (polyethylene), row
nucleated (cis-polyisoprene) and fibrillar (solid-state polymerized polyoxy-
methylene). The success of the approach emphasizes that semicrystalline
polymers can nearly always be represented morphologically as consisting of

separate and mechanically distinct crystalline and amorphous phases.

1. INTRODUCTION
The high level of interest in man-made composite materials has, especially

during the last decade, given rise to many attempts to relate their mechanical
behaviour to that of the constituent phases. To this end, many theoretical
contributions have been made which can be summarized by the term
'composite theory' or 'micromechanics theory'. These theoretical develop-
ments have, in the main, concentrated on the elastic moduli of two-com-
ponent systems exhibiting Hookean elasticity and are exemplified by the
now-classical diagram shown in Figure 1. This diagram shows the Young's
modulus predicted as a function of composition for a particular choice of
the ratio, E1/E2, of the moduli of the components. The diagram shows four
curves each of which corresponds to a particular 'morphological model' or
set of assumptions regarding the stress or strain distribution.

The curve marked V is that first derived by Voigt' on the assumption that
the strain is uniform throughout both phases. This corresponds to a model
with the phases in parallel (e.g. infinite rods of one phase aligned in the
direction of strain, embedded in a matrix of the second phase), and represents
the stiffest possible structure in the absence of other constraints2' 3Alterna-
tively, the Reuss model4 which gives the curve marked R in Figure 1 repre-
sents the behaviour of a system in which the stress is equal in the two
components. An example of this morphology is a sandwich structure of
alternating layers of the two phases loaded normal to the plane of the
layers. We shall be referring later to this sandwich morphology.

The Voigt and Reuss models provide upper and lower bounds respectively,
but their predictions differ so greatly for E1/E2 values significantly different
from unity, that they are of rather academic interest. Attempts to improve
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Figure 1. An example of Voigt, Reuss and Hashin-Shtrikman upper and lower bounds for the
modulus of a two-component composite. Modulus expressed as E/E2 for E2/E1 = 10.

the definition of the modulus, i.e. to define closer upper and lower bounds,
have been energetically pursued, with much success. Hashin5 and Hashin
and Shtrikman6 treated the case of spherical and non-spherical inclusions
of one phase embedded in the second and used variational principles to
predict upper (U) and lower (L) bounds for the elastic moduli as a function
of composition. These are shown in Figure 1 for the Young's modulus of a
composite with arbitrary phase geometry, and define much narrower bounds
than the Voigt and the Reuss models. Although these results, based on very
general considerations, are valuable, more precise predictions require the
exact specification of the morphology, i.e. the shape, distribution and
concentration of the phases.

The application of these concepts to naturally occurring 'composite'
materials poses a number of difficulties. Most such materials have micro-
structures which require sophisticated methods for their definition, either on
account of the very small scale on which they occur or because mechanically
important features are not readily discerned (e.g. by microscopy). Secondly,
it may be impossible to isolate the separate phases to measure the single-
phase properties. Even where comparable single-phase solids exist, it is
difficult to ensure that they exhibit identical properties to those of the
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MORPHOLOGY AND MECHANICAL PROPERTIES

in-situ composite phase. Thirdly, it may be difficult to control the phase
composition and/or geometry to obtain systematic variations in properties.
Examples of some of these difficulties are found in the prediction of elastic
moduli for bone (a natural composite of collagen and hydroxyapatite),
discussed by Katz7, and the problem of characterizing the amorphous
phase in polyethylene (see later). The inaccessibility of the separate phases
to mechanical characterization, of course, provides an 'escape route' by
which to explain discrepancies between theory and experiment, and such
discrepancies may betray the presence of previously unsuspected morpho-
logical features (e.g. Krigbaum, Roe and Smith8). However, this remains an
unsatisfactory feature of our current state of knowledge.

In the face of morphological uncertainties, it is tempting to adopt a
'curve-fitting' approach using a general model which is not intended to
relate directly to the actual morphology of the system. Some success was
obtained by this means by Mullins and Tobin9 and by Takayanagi'° who
used a combined series and parallel spring model. Until, however, we are
able to employ models which correspond in some way to the known morpho-
logies, the application of composite theory to such systems as semicrystalline
polymers seems of doubtful value.

Attempts to use morphologically realistic models for semicrystalline
polymers have recently been made by Reed1' for cis-polyisoprene and by
Halpin and Kardos12 for model spherulitic and layered polymers. Although
Halpin and Kardos used only artificial composites, their work provided a
starting point for the investigations of Patel and Phillips'3 reviewed below
and focused attention on the possibility of treating spherulitic polymers by
a simple two-phase composite theory.

In what follows, some further examples are given in which realistic
morphological models have been used to predict, quantitatively where
possible, the Young's moduli of semicrystalline polymers. These models vary
from that of Halpin and Kardos, in which a spherulite is represented as an
isotropic array of crystalline filaments in an amorphous matrix, to one in
which the polymer is represented by a system of packed parallel filaments
of varying aspect ratio. in each case the composite concept of distinct
crystalline and amorphous phases appears valid and is sometimes highly
successful.

This emphasizes the validity of distinct-phase morphologies for semi-
crystalline polymers, not only in low crystallinity materials where micro-
scopy reveals graphically the separation of the phases14, but also in high
crystallinity materials (crystallinity in excess of 90 per cent). It appears that
single-phase concepts such as paracrystallinity have yet to prove any
advantage over 'composite' concepts in predicting the mechanical properties
of even highly crystalline polymer solids.

2. YOUNG'S MODULUS OF SPHERULITIC POLYETHYLENE

2.1 Theoretical equations
The appropriate equations are those derived by Halpin and Kardos'2 for

the Young's modulus, E11, of an oriented array of ribbon-like crystal
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lamellae, of longitudinal Young's modulus E, embedded in an isotropic
matrix of amorphous material, modulus Em. The equations are:

E1 i/Em (1 + ?1Vf)/(l — ?7Vf)

and

(EC/Efl,) — 1

(Ec/Em)+
where Vf is the volume fraction of crystalline material and is the aspect
ratio of the lamellae (ratio of twice the length to the thickness of the ribbon).
For a spherulitic polymer containing radiating lamellae it seems reasonable
to equate to the spherulitic diameter divided by the lamellar thickness.

It follows from equations (1) and (2) that

E11 Em

F
= ?7Vf

and a plot of the left hand side of equation (3) against ?7 should give a straight
line of slope Vf. In order to apply these equations to the isotropic array of
filaments appropriate to a spherulitic solid, it is assumed that E1 £22, G12
(the Young's and shear moduli in the perpendicular and parallel directions
respectively). Then E11 can be taken as approximately three times the
isotropic Young's modulus, E, of the spherulitic polymer.

Equations (1) and (2) apply over certain ranges of only. Halpin and
Kardos predict that E should become constant at s 1000.

These predictions will be considered later in the light of the experimental
data on high-density polyethylene. In order to apply the predictions it has
been assumed that E is the Young's modulus in the b crystallographic
direction15

E = 4000 MN

and that the matrix modulus is of the order of that of a typical elastomer,

Em = 10 MN m2

2.2 Experimental Progranune
Dumb-bell specimens were cut from compression moulded sheets of a

standard high-density polyethylene supplied by the Polymer Supply and
Characterisation Centre, RAPRA, Shawbury. These specimens were placed
in close-fitting moulds and heated to 200°C in a vacuum for 2 h before
being quenched to the desired crystallization temperature, where they were
held for 2436 h depending on the temperature. In order to generate small
spherulite sizes, repeated quenching from just above the melting point was
employed to increase the nucleation density by self-seeding.

Mechanical properties were determined at 23 °C using an Instron tester
and true-stress- true-strain analysis. Young's modulus was determined over
the first one per cent strain and results are the average from six specimens
at each condition.

Spherulite radii were determined using laser-light scattering16, the results
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occasionally being checked by polarizing microscopy. The two methods
always agreed within 25 per cent. Lamellar thicknesses were calculated by
using the specimen melting points (obtained by DTA) together with data'7
from the literature relating lamellar thickness to melting point. Results were
confirmed for selected specimens using low-angle x-ray diffraction, which
agreed within ten per cent.

Finally, further specimens were prepared and tested to explore the varia-
tion of modulus with lamellar thickness at constant spherulite radius.
Materials with a spherulite radius at 9.0 .tm were annealed at various
temperatures to induce different degrees of lamellar thickening. Degree of
crystallinity was estimated in all cases by density measurements.

2.3 Results
Figure 2 shows the variation of Young's modulus with spherulite radius

for 'as crystallized' specimens, and reveals a threefold difference between the
moduli of the softest and stiffest specimens. This large difference is unlikely
to be a result of crystallinity variations since the measured values of Vf
varied only between 67 and 77 per cent and this variation was not systematic.
Secondly, a clear maximum is found at a mean spherulite radius of about
13 tim.
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Figure 2. Young's modulus of a spherulitic polyethylene as a function of spherulitic radius
(after Patel and Phillips).

This interesting result is consistent with the picture suggested by Halpin
and Kardos'2, since the initial increase in modulus with spherulite size
occurs in specimens crystallized at supercoolings in excess of 20°C, in
which range the lamellar thickness is insensitive to temperature. Thus these
lamellae have aspect ratios which are nearly proportional to the spherulite
radius, and the near-proportionality of Young's modulus and spherulite
size (Figure 2 is a direct result. At higher temperatures (supercoolings less
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than 20°C), even larger spherulites are obtained but now the lamellar
thickness is increasing rapidly with crystallization temperature. The tendency
to higher aspect ratios arising from larger spherulite radii is thus offset and
eventually swamped by the decrease in caused by rising lamellar thickness,
so that and modulus begin to decrease with increasing spherulite size.
The maximum in Figure 2 results.

This explanation is strongly supported by the data given in Figure 3
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Figure 3. Young's modulus of a spherulitic polyethylene as a function of lamellar thickness at a
constant spherulitic size of 9.0 tm (after Patel and Phillips).

which reports the effect on Young's modulus of lamellar thickness at constant
spherulite radius (data from annealed specimens). This shows that Young's
modulus is very nearly inversely proportional to lamellar thickness in this
range of . Decreasing lamellar thickness thus increases and increases the
Young's modulus at constant spherulite radius.

The most critical test of the theory is shown in Figures 4 and 5. In Figure 4
is shown the Young's modulus as a function of the aspect ratio . Between

= 400 and 800, E increases sigmoidally from the lower limit for = 1 to
the theoretical upper limit for > 1 000. Although the upper limit is reached
earlier than = I 000, as given by Halpin and Kardos, and although two of
the repeatedly quenched specimens lie off the line, Figure 4 represents
excellent agreement with theory.
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Figure 4. Young's modulus of a spherulitic polyethylene as a function of lamella aspect ratio
(after Patel and Phillips); . repeated quench; (®) annealed specimens.

Figure 5 shows the data plotted according to equation (3), using E11 = 3E.

The slowly crystallized specimens exhibit the predicted linear dependence
with a slope, Vf, falling very close to the values (0.67 to 0.77) obtained from
density measurements.

E

Lu u,I +
lUtu

Figure 5. Data plotted according to equation (3) (after Patel and Phillips).
(a) repeated quench; (7) annealed specimens.

2.4 Conclusion

(0) slow crystallization;

The main conclusion from this work is that the elastic moduli of a highly
crystalline, spherulitic polymer can be explained in terms of a simple two-
phase composite of crystalline filaments in an amorphous matrix. Good
quantitative agreement between theory and experiment can be obtained
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without invoking more sophisticated concepts such as tie-molecules or
unusual amorphous states.

This is not, of course, to say that interlamellar contacts, tie molecules and
the like are either unimportant or absent. Indeed, in a previous paper'8 the
author has provided good evidence that the yield strengths of spherulitic
polyethylenes are governed by the degree of interlamellar contact. The
present work simply indicates that the initial moduli of spherulitic material
owe nothing to such aspects of the microstructure.

3. STRESS—STRAIN CURVE OF ROW-NUCLEATED
POLYISOPRENE

3.1 Structure of row-nucleated cis-polyisoprene
This has been fully documented elsewhere19 and needs only brief mention

here. If cis-polyisoprene (or any other crosslinked or high-viscosity polymer)
is deformed in the melt and allowed to crystallize before the stress fully
relaxes, an ordered structure results in which the majority of the crystalline
phase consists of lamellae lying normal to the direction of orientation. (This,
of course, means that the molecular axis in the lamellae lies in the orientation
direction as would be expected). Providing the melt strain is not too large,
only a very small amount of crystalline material is found in the row-nuclei
which lie along the strain axis and from which the much more extensive
lamellae grow outwards. It is thus possible to represent the morphology of
such a material as a sandwich structure consisting of parallel layers of
crystalline and amorphous material, the layers being perpendicular to the
original axis of melt strain (Figure 6).

3.2 Stress—strain behaviour
Reed1' performed tensiles tests on cis-polyisoprene specimens crystallized

from the strained, cross-linked melt, deforming the specimens in the direction
of the initial melt strain. Some results are shown in Figure 7 (experimental
points; the lines are all theoretical curves except for that marked 'amor-
phous'). As the diagram shows, specimens crystallized at different melt
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Figure 6. Sandwich model for row-nucleated cis-poIyisopine.



MORPHOLOGY AND MECHANICAL PROPERTIES

00

E 300

U)
U)
a)

'ti 200
a)

100

0

Izgure 7. Stress—strain data for cis-polyisoprene crystallized at various melt-strains and tested
at —40°C. Pornts and amorphous' curve are experimental. Other curves are theory (solid lines

without lameilar buckling broken lines with buckling) (after Reed),

strains give completely different stress—strain curves, though all are generally
rubber-like reflecting the rubbery character of the amorphous phase at the
temperature of test (—40°C in Figure 7).

At first sight the results appear incapable of explanation in terms of the
sandwich model of Figure 6. Since the degree of crystallinity (about 3Ø%)
is nearly the same for all specimens, one would expect a single unique curve
for all the crystalline specimens which would, of course, be stiffer than
wholly amorphous specimens (right hand curve in Figure 7). Instead it is
found that stiffness increases progressively as the pre-strain increases, even
though the morphology and crystallinity are virtually constant. Neverthe-
less, as shown below, the simple composite model can explain all the observa-
tions, provided that the residual orientation of the amorphous phase is
taken into consideration.

3.3 Theoretical explanation of the behaviour
Let the initial melt deformation be denoted by an extension ratio A0

(deformed length divided by undeformed length). The specimen is main-
tained at this extension ratio during crystallization, so that any improved
molecular alignment within the growing lamellae (diffraction studies
indicate almost perfect alignment in the strain direction) must be compen-
sated by a decrease in molecular alignment in the amorphous layers of the
sandwich. If we represent the alignments in the crystalline and amorphous
regions by effective extension ratios ), and respectively, we have

A0 V1A,, + (1 — v) 'a (4)
where i. is the volume fraction of crystalline phase (taken as 0.3 in this work).
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here is the residual extension ratio in the amorphous zones before
tensile testing commences. If we now suppose that deformation during the
tensile test is restricted to the amorphous (rubber-like) phase, we have ).,
the extension ratio of the specimen during the test, related to A the actual
extension ratio in the amorphous phase, by the following expression:

(5)
(1 — vf) j 1 — Vf 1 — Vf

which reduces, Vf = 0.3 being used, to

A = 2(A0 — 0.31UJ (A — 0.3) (6)

If it be assumed that the amorphous phase deforms in simple extension with
exactly the same stress—strain curve as the 100 per cent amorphous material
(right hand curve in Figure 7), this equation enables us to plot A against
stress for the semicrystalline specimens, given a value for A1. This latter
parameter can be calculated by using statistical theory together with the
known lamellar thickness of the crystalline layers, and Reed11 found a
value A 6.3.

Reed's calculated stress—strain curves for the different pre-extensions A
are shown as full lines in Figure 7. They provide a good qualitative repre-
sentation of the data, especially with respect to the effect of A on the curve.
A much better quantitative fit was obtained (dotted curves) by abandoning
the unrealistic assumption that the amorphous layers deform in simple
extension, without disturbing the crystalline layers. If, as must happen in
practice, the crystalline layers become buckled or corrugated as a result of
deformation, additional (shear) stresses are generated in the amorphous
layers and allowing for these effects, calculation predicts the greater stiffness
(dotted curves) actually observed experimentally. The relatively poor fit for

1.34 is not unexpected since at this low pre-extension the layer
morphology is not yet fully developed.

3.4 Conclusion
By introducing sophistications into a very simple 'sandwich' model, the

stress—strain behaviour of row-nucleated cis-polyisoprenes can be very
satisfactorily explained. Both the model and its refinements are fully justified
in terms of the known morphology and behaviour of the material, and it is
suggested that herein lies the success of the approach. Once again the
'composite principles' of assuming the presence of discreet, mechanically
distinct crystalline and amorphous phases provides a completely satisfactory
account of the phenomena.

4. THE ELASTIC MODULUS OF SOLID-STATE
POLYMERIZED POLYOXYMETHYLENE

4.1 Preparation and characterization of the polymer
Full details of this work are reported elsewhere20' 21 Briefly, the polyoxy-

methylene specimens were prepared as thick filaments (with the molecular
axis aligned with the filament axis) by the solid-state polymerization of long
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Figure 8. Degree of conversion into polymer of trioxan polymerized in the solid state at various
temperatures, as a function of irradiation dose.

filamentous crystals of trioxan. The crystals were irradiated with high energy
electrons at —76°C and subsequently polymerized at fixed temperatures of
30, 40, 50, 55 and 60°C for 48 h. Figure 8 shows the degree of conversion
into the polymeric state as a function of irradiation dose and polymerization
temperature, revealing a clearly defined maximum conversion at 1 Mrad and
50-55 °C.

It is well known that, after sublimation of residual monomer, such speci-
mens of polyoxymethylene are composed of long but discontinuous fibrils
of polymer aligned in the specimen axis. The question arises as to how, and
how far, such an assembly of fibrils can approach in rigidity the full theo-
retical stiffness of a continuous extended-chain molecular crystal.

To answer this last question, careful mechanical tensile tests were carried
out on the filaments of polymer, a specially designed extensometer being used
to avoid errors arising from deformation at the specimen grips (the filaments
were fixed in end-blocks with an epoxy resin which has considerably greater
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ideal behaviour for infinite micro-fibrils, extrapolating to theoretical modulus at fi = 1.

compliance than the specimens themselves). Details have been given else-
where22

The results for Young's modulus along the filament axis as a function of
conversion, [3, are given in Figure 9. The dotted line shows the theoretical
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relationship for fibrillar bundles with infinitely long fibrils, extrapolating to
the theoretical modulus of the extended-chain (helical) molecular crystal of
polyoxymethylene, at /3 1.

Although the fibrils which compose the filamentous specimen are known
to be discontinuous, the measured moduli approach the theoretical line
surprisingly closely. To further emphasize this, Figure 10 shows a plot of
Young's modulus E divided by conversion /3 as a function of irradiation
dose (the broken lines are the envelope of experimental points). On this
plot, theoretical modulus' for the filaments is a horizontal line and the
specimens are seen to approach their theoretical stiffness under conditions
where conversion is maximized. However, attempts to correlate E//3 with
conversion /3 directly are not successful.

Below is proposed a composite' model which accounts for these effects
in a semi-quantitative manner and which, once again, has the virtue of being
physically realistic.

4.2 Adhering fibril model for solid-state polymerized polyoxymethylene
Consider the volume of the original trioxan crystal lattice to be divided

into cubic segments of cube-edge d, and suppose that conversion into
polymer results in a volume fraction [3 of the material being converted into
polymer in the form of fibrils of width d, breadth d, and length nd. The fibrils
grow with a common orientation (Figure ii).

lym er

Figure 11. d'-Lattice for probability calculation.

Consider an element of the 'd-lattice'. The probability that it is occupied
by polymer is, of course, /3, and the probability that an immediately adjacent
cell (in a plane perpendicular to the fibril length) is also occupied by polymer
is fl2 The total side surface area of fibril is,

A—_4nd2 (7)

so that the total area of side-contact is given by

f32A = 4nd2f32 (8)
191
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The longitudinal tensile stress, af, in a fibril is transferred to other fibrils
only through these side contacts, the interfacial material being in shear. If
G1 is the shear modulus of the interface, and the total load, afd2, on a given
fibril is carried evenly by the contact regions, the interfacial strain becomes,

— (7fd 1 (If 9
)i4fld2f2 ( )

The total contribution, e, of this shear strain to the tensile strain of the
specimen is not easy to assess, since it depends upon the exact morphology
of the specimen and the thickness, h, of the interface. The morphological
factor can best be illustrated by Figure 12. In Figure 12a is shown a closely

(a)

B

(b)

A

Figure 12. (a) Interleaving fibrils; (b) accordian' model.

packed array of fibrils which interleave, and the contribution of inter-
fibrillar shear to tensile strain is of the order of

= yh/nd

nd being the length of a fibril. By contrast the more open 'accordian' type
structure of Figure 12b can contribute a maximum strain

= 'yhN/2nd

where N is the number of fibrils between 'fixed points' A and B.
Fortunately all possibilities can be approximated by realising that N will

have an average value given by,

so that
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The strain in the fibril itself is, of course,

(14)

where E0 is the Young's modulus of the fibril, and the total strain will
therefore be

14 h(1—fl)
C C1 + C +

The specimen modulus is then

or

(15)

(16)

(17)

Unfortunately it is not possible to evaluate the right hand side of this
equation with any great confidence, since G and (h/d) are not known.
However, if plausible values are taken, E0/G1 may be of the order of ioand
(h/d) of the order of 0.1, giving

E 100(1 —i)l'
/3E0

+
(2fl)2/33 j

1.0

0.8

(18)

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

Figure /3. Fraction of theoretical modulus achieved as a function of conversion jJ. Points are
experimental data, (0) polymerized at 50: (•) at 55: (S) at 55 low doses: (x) at 600C. Lines are

theory for various aspect ratios 2n as indicated.
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the left hand side of this equation being the fraction of theoretical modulus
attained for any given degree of conversion fi.

The right hand side of equation (18) is plotted against f3 in Figure 13 for
various choices of the fibril aspect ratio (2n), together with experimental
points. The experimental data for SO and 55°C fit extremely well the theo-
retical curve for an aspect ration of 6, although the low-dose specimens
polymerized at 55°C are better described by an aspect ratio of 20. The
limited data for 60°C agree well with an aspect ratio of 55. It must be
emphasized that the aspect ratio values for best fit are governed by the
choices of E0/G and of h both of which can only be guessed. The facts
remain that the fbrm of dependence upon f3 of the modulus is very well
predicted by the theory, and that the aspect ratio values required to fit the
data are not widely unrealistic. There is the further implication that the
aspect ratio of the polymer fibrils is dependent upon the conditions of
irradiation and polymerization.

4.3 Conclusion
A composite model of fibrils-in-contact is qualitatively, and to some

extent quantitatively, successful in describing the deviations from theoretical
values of the Young's modulus of solid -state polymerized polyoxymethylene.
As in the previous cases of very different morphologies, the basic ideas of
two-phase composite theory appear equal to the task of describing the
deformation of semi-crystalline polymers in the elastic region. It is the
author's hope that these ideas will be energetically pursued in their applica-
tion to other systems.
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