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ABSTRACT
At first a survey is given on the thermodynamics of rubber-elasticity and the
results of the statistical theory of molecular networks. Experimental data of
torsional vibrations, stress—strain measurements (simple extension and uni-
axial compression) and photoelastic properties in dependence of temperature
are reported. The measurements have been carried out on dry and swollen
crosslinked polymers, especially poly(methyl methacrylate) (crosslinked in
bulk or in solution), natural rubber, trans-polypentenamer and poly(butadiene).
The modulus—temperature curves were always linear in the rubbery region
when the samples had been carefully extracted. For poly(methyl methacrylate)
the curve of retractive lorce against temperature showed a bend at a distinct
temperature. Below this temperature the slope of the curve is lower than above.
This behaviour can be explained by the existence of long living associations in
poly(methyl methacrylate)—solvent systems already known by measurements
on the corresponding solutions. The associations are able to form physical
crosslinks.

Most elastomers do not behave ideally in the sense of the theory: they are not
purely entropy-elastic but show also an energy elasticity term of the modulus.
The energy elasticity part is not constant but increases with the network density
and the degree of swelling. From this it is concluded that the energy elasticity
contribution is not only an intramolecular effect caused by rotational isomerism.
The energy elasticity may also depend on other intramolecular effects and
intermolecular sources. The existence of short chains in the network seems
to be one essential reason for the nonconstancy of the energy elasticity contri-
bution. Photoelastic measurements in dependence of the degree of swelling
show that we must assume a short-range order in amorphous polymers.
Following a newer theoretical consideration, the second term of the Mooney-
Rivlin equation for the stress—strain behaviour of unswollen elastomers can be
explained by the co-operation of the short-range order and the chain-length

distribution in the random polymer network.

INTRODUCTION

Here we will deal only with the elastic properties above the glass- or
melting-temperature; that is, we will consider the behaviour of polymers in
the rubbery state. In the highly elastic state the substance consists of a
three-dimensional macromolecular network. The crosslinks can be formed
by primary bonds, secondary bonds, entanglements or domains in copoly-
mers, which are due to phase-separation1' 2, The primary bonds are chemical
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bonds, which cannot be detached without chemical reaction. The secondary
bonds are physical bonds, which may be loosened or knotted by temperature
or concentration changes. The physical bonds consist mainly of crystalline
regions. eventually of stable associations. All these network structures can
overlap each other. In the following we will consider mainly networks formed
by chemical crosslinking.

ThEORETICAL CONSIDERATIONS3

Thermodynamic treatment

Now. I would like to refer to the theoretical aspects. At first we have to
discuss the thermodynamic behaviour of a crosslinked system. Let us assume
a homogeneous body, which is subjected to a simple extension or uniaxial
compression. Then in the simplest case, the Gibbs equation will have on the
assumption of volume constancy the following form:

dtJ—TdS+fdl:dV=0 (1)

U is the internal energy, T the absolute temperature. S the entropy. I the
force. 1 the length and V the volume of the system.

From equation (I) follows:

(s\= T ) + .1 (2)
\ lj v. 1 V / V. T

By means of pure thermodynamics one gets:

= (1)

Combinations of equations (2) and (3) gives:

= - T() + f (4)

JdI has the sense of the reversible deformation work, d l4', which is a fictitious
work. This means that at any time the retractive force I in the system is equal
to the force applied to the system. which is actua'ly not possible in the course
of a real process. The formulas are always applicable if the state of the system
can be completely described with two of the variables f1 and T The formulas
cannot be applied if relaxation processes occur. In this case one needs further
(internal) variables. But also then they can be used in the integrated form, if
the beginning and the end of the process are completely defined by two of
the variables f, I and T Between these variables exists a function of state like
the ideal gas law in gaseous systems.

An ideal rubber is defined by:

/' I 1\( ) =0. (5)
\( IJV.T

Then it follows from equation (4) that

= a. T; where a is a constant (6)
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In this case we have only entropy elasticity. But in most cases a rubber does
not show only entropy elasticity but also energy elasticity, which seems to be
independent of temperature. Then we find:

f = f + f = b + aT; where b is a constant (7)

j is the energy and J the entropy contribution to the retractive force f
In this elementary treatment volume constancy is assumed. Direct measure-

ments at constant volume have been carried out by Allen et a!) It is, how-
ever, a difficult task to carry out measurements on solids at constant volume.
It may be easier to perform the extension or compression measurements at
constant pressure and to find the corresponding values at constant volume by
calculation.

To obtain exact elastic parameters it seems better to perform shear or
torsional measurements because shear and torsion are constant volume
deformations on classical elasticity theory8. This is not quite correct, as
Flory and Treloar have shown, but the volume changes are of second order
and the difference between constant volume and pressure coefficients is
simpler9 1O Therefore, torsion can provide a much more accurate basis for
deriving the internal-energy contribution from experiments at constant
pressure than does simple extension.

In the case of pure shear or torsion one obtains for the fictitious reversible
work per volume unit (form of sample: circular cylinder):

dw rev = d () = G . y. dy (8)

G is the equilibrium shear or torsional modulus and y the shear strain.
The Gibbs equation now reads, for constant volume12:

dU=TdS+V0G.-y.dy; dV=0 (9)

By pure thermodynamics one finds:

(---1 =V0y.G (10)

(S\ (aG\= — (11)

+ T(-) = V0yG — V0yT (G) (12a)
1V,T V,T

(?a)V,T — V0yT2 [ (12b)

F is the free energy. From equations(l0)(l2) there follows:

G=[() T()VT] = - T2[()]+ T() (13)

For linear-elastic behaviour, G is independent of-i'. Therefore we can omit the
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index y in equation (12). We call the first term in equation (13) the energy
elastic term G and the second term the entropy elastic term G of the torsional
(shear) modulus G.

GG+G (14a)

G=1(,) =_T2[()] (l4b)V0y 1' v.r cT T v
T (3S\ (G\G = -

V')V.T
= T)

With G 0 (ideal rubber) one obtains:
G = G = aT: where a is a constant

WithG[ =bwehave:
G = b + aT; where b is a constant (15b)

Of course the constants in this equation are not identical with those of
equation (7).

If G is temperature-dependent, G becomes a complicated function of
temperature.

Results of the statistical theory
The statistical thermodynamics gives an insight into the molecular base of

the rubber elasticity. The classical theory of rubber elasticity yields for the
equilibrium shear modulus at small deformations the well known formula8 :

<r2)G = vkT—---<r >
v is the number of elastically effective network chains per unit volume, k the
Boltzmann factor, <r2> the mean square end-to-end distance of network
chains in the undeformed, unswollen state and <r02> the mean square
end-to-end distance, for chains of the same length not constrained by cross-
links.

We have avoided all complications' and the formula is therefore very
simple. But the meaning of the factor (v. (r2)/(r02>) is elucidated: at first one
cannot separate the two terms of the parenthetical expression. Furthermore,
Duiser and Staverman among others deduced'3 that v should be replaced by
v/2. Entanglements and other physical crosslinks are unknown quanti-
ties. The factor <r2>/<r02> may be nearly I or smaller'4. A comparison of the
chemically and physically determined network density does not solve the
problem. There may be more or fewer elastically effective crosslinks than
found by chemical analysis.

For an elastomer swollen to the swelling degree q VI V,, (V = volume
in the dry state), one can derive for the shear modulus, the formula

Gq = G.q"3
if <r02> does not change during the swelling process, which can be assumed
to be approximately true. In equation (17), G refers to the dry state.
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For simple extension (A> 1) or uniaxial compression (A < 1) we get from
theory:

a =
vkT<<>>(A2

— A') (18)

A = 1110

1 is the length of the strained sample and 10 the original length. The stress a
is the force per unit cross-sectional area measured in the strained state A is the
extension ratio. The factor <r2 >/<r02> considers the case that the several
rotational isomers of the polymer do not have the same internal energy.
From this it follows that <r02) is temperature dependent and that in the
strained state a part of the retractive force consists of a change of the internal
energy with deformation.

If a0 is the force per unit area of the unstrained cross-section we have:

a0=vkT.'?,.(A_A_2) (19)

For swollen elastomers we derive formulas, according equation (17), which
contain the swelling degree or volume fraction of the polymer respectively.

A deformation is generally connected with a birefringence. In analogy with
the derivation of the statistical theory of rubber elasticity, Kuhn and Grün
derived a relation between the birefringence and the strain of an elastomer'5.
For this derivation the Lorentz and Lorenz equation is assumed valid.

The Kuhn and GrUn equation reads, with regard to the dilatation factor'6:

An = n, — n2 — (112 ± 2)2Vcr2 Act (A2 — A') (20)

An is the birefringence, that is the difference of the refractive indices in the
direction of extension and perpendicular to it. 11 = (n, + 2n2)/3 is the mean
refractive index and Act the difference of the polarizabilities of the statistical
segment in the direction of the segment and perpendicular to it. According to
the statistical theory An at constant strain should be nearly independent of
the temperature.

The ratio of birefringence to stress is called the stress—optical coefficient
C. From equations (18) and (20) there follows

An 2n .(112 + 2)2
C=__=4SkT. Act (21)

The formula shows that C at a given temperature does not depend on the
extension A, the network density v and the factor <r2>/<rg>. For swollen
samples this ratio is independent of the degree of swelling (except for a correc-
tion due to change in mean refractive index).

In these statistical theories only the properties of single polymer chains
are taken into account. The interaction between the chains and volume
requirements are not considered. Furthermore a Gaussian network is
assumed: this means that the deformations should not be too large.
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Viscoelastic properties
Until now we have only considered the elastic behaviour of a crosslinked

polymer. In the ideal case the elasticity consists only of entropy elasticity.
Normally, as mentioned above, a rubbery material has additionally an energy
elasticity contribution. Generally a polymer possesses elastic and viscous
properties above the glass or melting temperature. In this connection we
speak of a viscoelastic body. The properties of such a body are best and most
easily determined by the dynamic—mechanical method. Mostly used are
torsional vibration measurements. The viscoelastic body can be described
by the complex shear modulus

G* = G' + iG" (where i = — 1) (22)
The storage modulus G' is a measure for the maximal stored reversible work
of deformation per volume unit during a vibration period at the shear
amplitude y 1. The loss modulus G" is a measure for the dissipated work
per volume unit during a vibration period at the shear amplitude y 1 2

With G" < G' and the assumption that at low frequencies G' is independent
of the frequency we can identify the storage modulus G' with the static shear
modulus G. In this case we can perform a thermodynamic analysis using
equations (8)—(15).

SOME EXPERIMENTAL RESULTS AND DISCUSSION

First we will discuss some newer results of torsional vibration measure-
ments on rubbery substances. Some years ago a survey was made by Ferry'7.
Most measurements refer to dry elastomers. Only a few investigations have
been made on swollen gels i8. 19,

In Figure 1 the storage modulus G' is plotted against temperature for
various poly(methyl methacrylate) samples crosslinked in bulk'2 Before
starting the measurements the samples were carefully annealed but not ex-
tracted. In no case does the storage modulus increase with rising temperature,
as predicted by the theory of rubber elasticity. The loss moduli G" are of the

Fiqure 1. Plots against temperature of storage modulus G' for poly(methyl methaorylatc)
(PMMA) crosslinked with different amounts of ethylene glycol dimethacrylate (EGDM).

Frequency I Hz/ 0.0; p0.06; A 0.2; A I .o;• 2.0; R.0; '. 25 weight EGDM.
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ELASTIC PROPERTIES OF CROSSLINKED POLYMERS

same magnitude as the G' moduli. The material is viscoelastic at a frequency
of 1 Hz.

Figure 2 shows the behaviour of one of the poly(methyl methacrylate)
samples after being extracted with solvent and dried in vacuum. After this
procedure we obtained quite different results. Above 170 C the storage
modulus G' increases linearly with rising temperature. The loss modulus G'
however, decreased for some five decades compared with the same sample
before extraction. Furthermore we plotted the values of G'/T against the
temperature. If this curve is parallel to the temperature axis, the sample is
ideally rubber elastic.

44-
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Figure 2. Plots against temperature of G, G" and G/T for a crosslinked PMMA sample, after
extraction in m-xylene and drying. Frequency 1 Hz. 8 weight- ?, of EGDM.

In Figure 3 is shown an example of torsional vibration measurements on
swollen poly(methyl methacrylate). During the measurements the degree
of swelling was kept constant. Now the glass temperature is 100 degrees lower
than before.

For other poly(methyl methacrylate) samples crosslinked in bulk and
crosslinked in chlorobenzene and then dried we obtained quite similar
results (cf. Figure 4).

In the past, there have been many measurements of simple elongation,
uniaxial compression, and torsion on natural rubber and other teehnically
relevant elastomers by K. H. Meyer, Treloar, Flory, Gee, Allen, Krigbaum,
Smith, Caspary2° and others3'5' 8, We have made torsional vibration
measurements on several elastomers of technical importance in the dry and
swollen state'2.

Without extraction we did not obtain equilibrium values and G' was not a
linear function of the temperature. After extraction very accurate linear
dependencies were obtained.
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Figure 3. Plots against temperature of G'. G" and G'/T of a crosslinked PMMA sample. swollen
in m-xylene. Frequency 0.5 Hz. 1 °/ EGDM.

E
U U

C

Q

D

0

T, °C
Figure 4. Plots against temperature of G', G and G'/T for a PMMA sample, crosslinked in

chlorobenzene and dried. Frequency 1.0 Hz. 5°/a EGDM
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An example is given in Figure 5: natural rubber, crosslinked with dicumyl
peroxide, extracted into m-xylene and measured in the dry state. It is remark-
able that a plot of G'/T against T is not parallel to the temperature axis. This
means that in this system the energy elasticity part G' of the storage modulus
G' is very high.

('4 ('4

E
U U

- -

6
4

2

20 40 60 80

T, °C

Figure 5. Plots against temperature of G', G" and G'/T for a sample of natural rubber extracted
and dried and crosslinked with 2g of dicumyl peroxide (DCP) per lOOg of rubber. Frequency

0,9 Hz

In Figure 6 are shown some torsional vibration measurements on trans-
1 ,5-polypentenamer (TPR) at several densities of crosslinking above the
melting point. We achieved similar results with crosslinked poly(dimethyl-
siloxanes)2 1, All investigated elastomers, above the melting point and after

2.5

2.0 • •
.—.-flI II I •—U

p
1.5 - •—•

\ \ . . ____

1.0 -
I

0 +30 +60 +90

r, °c
Figure 6. Plots against temperature of G' for trans-1,5-polypentenamer (TPR) crosslinked with

DCP.(I3;• I°,A0.5°/0DCP)
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thorough and careful extraction, showed a linear dependence of the storage
modulus G on temperature.

By means of the statistical theories we can calculate the effective degree of
crosslinking. But at first we have to test whether the dynamic shear modulus
G' can be compared with the static equilibrium modulus G. Therefore, we
determined the frequency dependence of G' and G" for various elastomers
(0.1—1.8 Hz). We found that G' and G" were independent of the frequency in the
range we used, providing the storage modulus rises linearly with temperature.
Then. G can be compared with the static modulus G and we can calculate the
crosslink density. For a given sample the result was independent of the swelling
agent within the errors of our experiments. So we can conclude that <r2>
does not change strongly with the degree of swelling. But we cannot separate
the factor <r2),/ <r02> from the network density v. With G" < G' and frequency
independence of G it is possible to make the thermodynamic analysis and to
determine the energy elasticity part of G In Figure 7 the relative energy
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Figure 7. Relati e energetic contribution of the storage modulus (/G' plotted against the effective
network density e rN, (N, = Avogadro number) for samples of PMMA polymerized in
solution and crosslinked with EGDM. dry; swollen in ,n-xylene;C swollen in chlorobcnzene

elasticity value G/G' is plotted against the effective degree ofcrosslinking for
some dry and swollen poly(methyl methacrylate) samples. The energy elas-
ticity component increases with rising density of crosslinking. For low density
of crosslinking the samples showed almost ideal rubber elasticity.

In the next plot (Figure 8) is shown the energy elasticity term of the storage
modulus as a function of the degree of swelling for poly(methyl methacrylate)
samples. It was found that the energy elasticity component increases with
rising degree of swelling.

The results for the natural rubber samples were similar.
We believe that the increase of the energy elasticity part G1/G' with rising

network density and swelling degree is caused by the short chains in the net-
work. Usually a chain-length distribution exists in a network. Under strain,
the chains, mostly the short ones, are extended. This explanation seems to be
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rn
DO

Figure 8. Relative energetic contribution of the storage modulus G'(J/G' plotted against the degree
of swelling q = V/VQ for PMMA samples with different effective network density c crosslinked

in solution

supported by torsional vibration measurements on polybutadiene which is
crosslinked by carboxylic end groups. These samples are, to a high degree,
free from entanglements and short chains. The chain-length distribution is
narrow. In these samples the relative energy elasticity part is nearly indepen-
dent of the degree of swelling. They show ideal entropy elasticity at least for
small deformations (Figure 9). Kraus and Moczygemba obtained similar
results by means of stress—strain measurements22.

The origin of the energy elasticity is not completely clear. It may be positive
(natural rubber, poly(methyl methacrylate)S 12)or negative polyethylene23,
ethylene—4vinyl acetate) copolymer28). Most authors believe that only the
temperature dependence of the mean square length Kr02> of free chains is
responsible for the energy elasticity according to the relation

G Tdh<10>
G dT (23)

which follows from equations (14b) and (16). Equation (23) has to do with the
existence of rotational isomers and is therefore caused by intramolecular
interaction24 26 From equation (23) it follows that GU/G should be constant.
This is not always the case as is shown by our results on poly(methyl meth-
acrylate) and natural rubber and force--temperature measurements per-
formed by Opschoor and Prins on crosslinked polyethylene and ethylene—
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r °c
Figure9. Temperature dependence of the storage moduius G' of polybutadiene crosslinked over

carboxylic end-groups (3% of hexa[1-(2-methyl)aziridinyl]triphosphatriazine)

propylene copolymers23. Other authors confirm that the energy contribution
to the retractive force depends on the extension ratio and the network density,
respectively327'35. This consideration leads us to the assumption that the
rotational isomerism may not be the only reason for the deviations of the
ideal rubber behaviour. Besides intramolecular connections we must also
take into account interactions between the molecules. Up to now inter-
molecular forces are not included in network theory. For an interpretation
of the experimental results it may still be emphasized that it is difficult to
estimate the role of faults in calculated or accepted volume constancy in
these cases.

Now we will discuss the birefringence behaviour of uniaxial strained
elastomers. Schwarz has made measurements on cis-l ,4-polybutadiene and on
a copolymer of butadiene and styrene29. Further measurements have been
made on TPR30. All substances were crosslinked with dicumyl peroxide.
We have seen that An should be independent of temperature (equation 20).
Figure 10 shows that this is not the case. d0 is the width of the sample before
the deformation and is introduced to simplify evaluation. We see that the
birefringence at constant deformation decreases with increasing temperature.
In Figure lIthe corrected stress optical coefficient C* of swollen butadiene
styrene copolymer is plotted against the swelling degree q = p'. The
correction refers to the mean refractive index ñ (cf. equation 21), which changes
slightly with swelling. An isotropic solvent (carbon tetrachioride) was
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6.5 7.0 7.5 8.0

— 2) d0
X2—A1 U)

Figure 10. Temperature dependence of the expression (n1 — n2)d0/(A2 — ). ')for polybutadiene.
,2 is the relative deformation, (n1 — n2) the birefringence and d0 the width of the sample before the

deformation

Figure 11. Corrected stress optical coefficient C as a function of the swelling degree q p' of
a butadiene—styrene copolymer (26 % of polystyrene) at different temperatures. p2 is the volume

fraction of polymer. Swelling agent, carbon tetrachioride
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chosen, to exclude secondary effects. Similar results have been obtained with
all investigated elastomers and leads to the conclusion2931 that a short-
range orientational order operates in amorphous polymers in such a way that
adjacent segments of different chains prefer to be parallel to each other to
meet volume or interaction requirements. This short-range order must
decrease with increasing temperature and uptake of solvent. The influence of
swelling shows that it is an intermolecular effect.

Let us consider another effect: The stress—strain behaviour of swollen
crosslinked poly(methyl methacrylate) as function of the temperature is
unusual, as seen in Figure 1232. Above 30C the behaviour is normal. Below
30 °C the modulus is greater and the reduced force-temperature curve becomes
horizontal. We can explain this in the following way. We know that linear
poly(methyl methacrylate) shows association, also in the atactic form33
Therefore we can assume that intermolecular associations are also present in
crosslinked poly(methyl methacrylate). At lower temperatures these associa-
tions may be relatively stable in a network. So we will have a superposition of
chemical and physical crosslinks. Therefore the plot of reduced force against

X—A2

00
p

0 0 0

6

—40 —20 0 20 40 60 80

I ,°C
Figure 12. Reduced force f/ — ): 2 as a function of temperature for a gel of crosslinked PMMA

and chlorobenzene. Degree of swelling q 5. MCaIi dcformaton nearly 7,

temperature has a bend. We found this bend for all investigated poly(methyl
methacrylate) samples. In contrary to this, gels from crosslinked polystyrene
show normal temperature-dependence of the reduced force (Figure 13). From
this we may conclude that for poly(methyl methacrylate) gels we can not
determine the network density in a network of primary (chemical) crosslinks
from the slope of the force—temperature plot at lower temperatures. To do so,
we would have to take into account crosslinks of secondary (physical) bonds.
It is necessary to measure the stress as a function of the temperature over such
a large temperature range that we can exclude the existence of a bend and get
only one straight line according to the theory. This holds for all polymers.

Mistures of isotactic and syndiotactic poly(methyl methacrylate) lead to
formations of stereocomplexes in solution33 We suppose that this complex
formation occurs in small regions also in so-called atactic poly(methyl
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r, °c
Figure 13. Reduced force f/A — as a function of temperature for a gel of crosslinked poly-
styrene and chlorobenzene for several series of yieasurements with decreasing and increasing

temperature. Degree of swelling q 10. Mean deformation nearly 8 /

methacrylate) between tactic sequences. These complexes seem to form the
long living intermolecular associations.

in the temperature region in which association leads to an elevated
modulus, we cannot carry out thermodynamic analysis because we cannot
describe the system only in terms of the two variables T and A.

It cannot be assumed that association equilibria are established. Therefore
we have no true equilibrium and we must introduce further parameters,
which describe the state of association.

THE MOONEY-RIVLIN EQUATION

Mooney and Rivlin have derived a phenomenological equation, which
describes the stress—strain behaviour in a large deformation range (Figure
14).

a = C,(22 — E) + C2(A — A2) (24)

with C1 = vkT<r2>/<r>. C, and C2 are constants. The first term corresponds
to the statistical theory. The second term gives a contribution to the retractive
force, which becomes smaller or vanishes with increasing strain or swelling
degree. Therefore the simplest behaviour according to the statistical theory
is best fulfilled for swollen crosslinked polymers.

Many attempts have been made to explain the C2 term on a molecular basis
but without general acceptance'. The newest explanation has been given by
Schwarz38. According to this theory the deviation from the statistical theory
of rubber elasticity is explained by the cooperation of short-range order and
chain-length distribution according to the following mechanism.

During deformation of a polymer network having a chain-length
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Figure 14. Schematic graph of the retractive force f as function of the relative deformation 2.
I ull curve: experimental results. Dotted curve: theory

distribution the segments of the shorter chains have a certain mean orientation,
which is greater than that of the segments of the larger chains, while the free
chain ends have no orientation at all in the equilibrium state. This is valid
for independent chains, as is assumed in the statistical theory. But in reality
the chains are not independent and we must assume a short-range order. The
segments of the larger chains adjust their mean orientation to that of the
shorter ones to some extent, so that the order can be maintained. This ordering
state does not change with deformation, as Göritz and Muller have con-
cluded from their measurements on crosslinked natural rubber35.

This additional orientation for the maintenance of the short-range order
gives a decrease in entropy and therefore an addition to the retractive force.
The birefringence will become greater as in the case of independent chains.

All experimental results regarding the C2-term are in agreement with this
model. The swelling by solvents of low molecular weight destroys the short-
range order in the polymer and decreases therefore the C2-term. The decrease
of the Stress—optical coefficient of elastomers with swelling in isotropic solvents
can also be explained in this way16'29'31'38'39. The decrease of the birefrin-
gence at constant strain with rising temperature is also caused by the loss of
short-range order. The above mentioned polybutadiene network crosslinked
by end-groups did not show a C2-term because the chain-length distribution
was very small and free chain ends were lacking22. The influence of the
preparation of the networks and the type of deformation on the C2-term can
also be interpreted in this way. This qualitative explanation has recently been
reinterpreted quantitatively38.

Two phenomena have therefore great influence on the elastic properties of
crosslinked polymers: the chain-length distribution and the short-range
order.
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CONCLUSION

Some remaining problems for research on rubber elasticity in the future
may be mentioned briefly:

Experimentally we must try to construct better networks without entangle-
ments, other physical crosslinks, heterogeneous regions and free chain ends.
The chain-length distribution should be as narrow as possible. The question
of volume constancy is very important. We should try to obtain exact results
either by direct measurements or by calculation from constant-pressure
measurements without rough approximations. How the crosslink density v
can be separated experimentally from the dilatation factor <r2)/<r> should
be studied.

Theoretically the molecular interpretation of the modulus (cf. equation 16)
must be reconsidered. We do not know if v is the true crosslink density or
only a measure of it. The front factor may vary between one and one-half
Furthermore we must assume that rotational isomerism is an important but
not the only molecular basis of the energy elastic contribution to the modulus.
In the theoretical work the forces between the molecules must be considered
too. A real network does not consist of isolated chains. In the theory of photo-
elasticity there remains the task of calculating the internal electric field and
estimating its influence on birefringence. Despite many efforts, the conse-
quences of a gaussian or non-gaussian network on the elasticity behaviour
of a rubber are not fully understood.
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