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ABSTRACIT

ESR linewidths have been used to study the dynamics of molecules in liquids.
The correlation times characteristic of both the anisotropic g-values modulated
by molecular tumbling (t0) and spin—rotational interactions modulated by
collision-induced changes in molecular angular momentum (tSR) are considered
If isotropic rotational diffusion is assumed, a minimum linewidth as a function
of temperature is predicted. Furthermore, r can be set proportional to r3,,
where depends upon intermolecular torques and forces and r is the trans-
lational diffusion radius, and in many cases is independent of temperature for
a given solvent; similarly, in rotational diffusion theory, r =(J/6kT)
where 1 is the moment of inertia. The predicted and measured minima in line-
widths often differ from each other, and the discrepancy can be attributed either
to anisotropic diffusion or, equally well, to the inadequacy of the expression
above for tSR.

Studies have been carried out for (n-C4H9)4N NiS4C4(CN)4 in n-butanol,
and in CHC13. If anisotropic rotational diffusion is assumed, the discrepancy
in the linewidth minimum can be explained if (D1/D1) 2.2 in both butanol
and CHC13. To correct the relationship between z8 and TSR' one can show on
the basis of Ivanov's jump model that_rQrSR = (I/6kT) c(1 — 2Y' where is
a mean rotational jump and )L2 is a function of a and the spread in jump angles.
The value (0.81) of (1 — )2) 1, required to correct the Iinewidth minimum,
indicates small jumps with a large spread in jump angles.

If (D1/D1) and c(l — are taken to be temperature independent,
x appears to be temperature dependent in butanol but not in CHC13; however,
if c(1 — 2) is temperature dependent in butanol, could be temperature

independent.

INTRODUCTION

The study of magnetic resonance linewidths and spin-relaxation times in
liquids yields correlation times for molecular reorientation. These correlation
times describe the time dependence of single particle autocorrelation func-
tions of a second rank rotational tensor. Debye1 described molecular
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reorientation times in terms of the Stokes—Einstein2 hydrodynamic theory,
and Bloembergen, Purcell and Pound3 applied the theory to magnetic
resonance experiments. These hydrodynamic results are strictly valid only
for large, spherical particles moving through a homogeneous continuous
medium. A number of relations have been suggested and in particular we can
write the correlation time 'r, as4:

4 irri
(1)

where is the coefficient of shear viscosity, T is the absolute temperature,
k is the Boltzman constant, r is the translational diffusion radius of the
spherical molecule, and is a parameter which accounts for the deviations of
the Debye results from the experimental values. The time r can be obtained
from magnetic resonance experiments, /T can be measured directly, and
the radius r can be determined from translational diffusion experiments. The
parameter x for a given solute molecule appears to be independent of ij/T
for a number of different solvents but can differ from solvent to solvent. This
parameter has been recently interpreted in terms of equilibrium ensemble
averages as5:

= (1/r9 <92>I<F2) (2)

where F is the intermolecular torque, F is the intermolecular force, r is the
bydrodynamic radius of the solute molecule.

In this article we discuss a case where the parameter t appears to be
strongly dependent upon ij/T, i.e. (n-C4H9)4N NiS4C4(CN)$ in the strongly
hydrogen-bonded solvent, n-butanol. We also study this radical in CHC13
and find that for this system appears to be independent of i/T. We then
interpret the data, along with that for other paramagnetic species in alcohols,
in several different ways, all of which reflect the dynamical behaviour of the
liquid. In particular, we show that x may actually be constant even in the
hydrogen-bonded solvents if the data is analyzed properly.

GENERAL THEORY

The esr linewidth of (n-C4H9)4NNiS4C4(CN)4 in n-butanol was studied
as a function of temperature. The free radical has no resolvable hyperfine
structure and the spectrum, except at very low temperatures where the simple
motional narrowing theory breaks down, consists of a single nearly Lorent-
zian line. The linewidth, AR, is the peak to peak width of the first derivative
of the absorption spectrum (see Table 1) (see the Appendix for viscosity
measurements on butanol).

In the motionally narrowed limit (Redfield limit), the Iinewidth arises
primarily from reorientational averaging of the anisotropic g-tensor and
from angular momentum averaging of spin—rotational interactions through
collision-induced changes in the angular momentum, if the rotational
motion can be described in terms of a spherically symmetric diffusion model7,
and if the angular momentum correlation time is short compared to that for
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Table 1. Data for (n-C4H9)4NNiS4C4(CN)4 in butanol. g = 1.994, g = 2.141, = 2.040.

Temperature (cP)
(cP K 1)(K) T

AH (G)
(experimental)

t20 (s)
(from experiment

and Figure 1)
(x 10")

389.3 0.40 0.00103 13.02 ± 0.101 0.985
381.4 0.45 0.00118 11.70 ± 0.07 1.125
376.8 0.482 0.00128 11.29 ± 0.07 1.17
370.6 0.55 0.00148 10.52 ± 0.14 1.26
363.9 0.63 0.00173 9.3 1.51
363.5 0.62 0.00171 9.503 ± 0.064 1.46
358.4 0.68 0.00190 8.792 ± 0.194 1.64
354 0.73 0.00206 8.469 ± 0.100 1.73
348.5 0.82 0.00235 8.017 ± 0.100 1.88
343.6 0.92 0.00268 7.598 ± 0.049 2.09
338.6 1.00 0.00295 7.256 ± 0.066 2.28
332.8 1.12 0.00337 6.920 ± 0.036 2.52
328 1.25 0.00381 6.654 ± 0.017 2.85
320.8 1.50 0.00486 6.475 ± 0.100 3.12
315.6 1.66 0.00526 6.329 ± 0.049 3.45
311.2 1.82 0.00585 6.248 ± 0.043 4.2
305.5 2.10 0.00687 6.356 ± 0.029 5
296.7 2.70 0.00910 6.61 ± 0.09 5.85
296 2.7 0.00912 6.606 ± 0.022 5.8

287.4 3.45 0.0120 7.175 ± 0.081 6.98
281.6 4.00 0.0142 7.695 ± 0.017 8.18
273 5.20 0.0190 9.209 ± 0.065 1.09
268 6.10 0.0228 10.27 ± 0.06 12.5
262 7.50 0.0286 11.83 ± 0.06 15
258.4 8.40 0.0325 12.99 ± 0.06 16.5
251.2 10.80 0.0430 16.06 ± 0.1 20.8
248.8 12.00 0.0482 16.58 ± 0.29 21.2
245 13.60 0.0555 18.78 ± 0.06 24.8
240.7 16.00 0.0665 22.29 ± 0.46 29.3
240.6 16.50 0.0686 21.25 ± 0.05 28.0
235.8 19.80 0.0840 25.41 ± 0.39 33.8
230.5 25.00 0.1085 26.85 ± 0.15 35.8
230.5 25.00 0.108 27.17 36.0
228.6 26.50 0.116 27.82 37.0
228.5 27.30 0.1195 27.35 ± 0.05 36.6
223.1 34.50 0.1546 26.85 ± 0.45 35.8
220.1 39.50 0.1795 25.44 ± 0.56 34
217.1 46 0.2119 25.3 33.9
213.8 54 0.2526 23.95 ± 0.04 31.8
208.5 71 0.3405 20.1 26.4
203.5 92 0.4521 19.42 ± 0.06 25.2
196.1 142 0.7241 15.87 27
190.1 205 1.0784 13.2 ± 0.2 16.8
185.1 290 1.5667 10.97 13.6

209



ROSA HUANG AND DANIEL KIVELSON

reorientation4' 8 then we have,

[° {(Ag) + 3(g)2} {1 + (1 + wt) 1} + (ôg)2t 1];

(3)
w0 is the Zeeman frequency (s 1), fi is the Bohr magneton,

g0 = () (g + g + g2), (4)

Ag = g — () (g, + (5)

= () (g — g), (6)

0g = [(g= — 2.00231)2 + — 2.oo231)2 + (g — 2.00231)214 (7)

where g, 6'3 g are components of the diagonalized g-tensor in the molecular
coordinate system. In obtaining equation 7 we have assumed that the spin—
rotational correlation time, r, about the x-principal molecular axis is given
by the Hubbard expression4'8'°

t6kTt0 (8)

where k is the Boltzmann constant and i is a moment of inertia about the
of-axis. It is usually assumed that this expression is valid provided

> t (9)

a condition satisfied in the experiments described here. However, in a later
section we shall discuss the validity of equation 8.

For the (n-C4H9)4N NiS4C4(CN)4 molecule in butanol we determined
the g-tensor from measurements in the butanol glass at 77 K:

= 2.141

= 2.040

= 1.994.

We assumed that these values were unchanged in the liquid. For the radical
in CHC13 we assumed the g-tensor determined by Maid et a!6. for this radical
in a CHC13—DMF glass:

= 2.140

2.043

= 1.996.

The experiments were carried out at w0 = 5 x 1010 s'
Equation 3 can be used to calculate EiH as a function of T; the width AH

has a minimum when plotted as a function of t0, (see Figure 1), a result •
compatible with the experimental observation that AH has a minimum when
given as a function of /T. Whereas the theoretical minimum in butanol is
AHmin = 6.89 G at 'r0 = 4.6 x lOhi s, the observed minimum is 6.25 G at
T = 311 K. Although one can always attribute the excess of observed width
over theoretical width to unknown relaxation mechanisms or to sample
impurities, one must question equation 3 itself in trying to account for the
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1x10

Figure 1. AH (peak to peak width of the derivative spectrum) versus r20 for n-butanol.
AH was calculated according to equation 10 with x = 0.180; the components of the g-tensor are
those given in Section II. versus t0 for (n-C4H9)4N .NiS4C4(CN)4 in n-butanol
calculated according to equation 3. —. — •— AH versus t0 for (n-C4H9)4N NiS4C4(CN)4 in

n-butanol calculated according to spin—rotation correction with e(1 — A2)
1 0.81.

excess of the theoretical width over that observed. A more careful analysis
indicates that the assumption of isotropic rotational diffusion, implicit in
equation 3, need not be applicable; furthermore, the assumption, implicit
in the derivation of equation 3, that the spin—rotational correlation time,
TSR, is proportional to -r (i.e. equation 8), may be invalid. In the next section
we will consider anisotropic diffusion and in a later section we will study TSR.

ANISOTROPIC DIFFUSION

Although we should consider totally anisotropic rotational diffusion,
and the diffusion tensor and the g-tensor need not necessarily be diagonal
in the same coordinate system, the accuracy of the experimental data does
not warrant the use of so many adjustable parameters. Therefore, we will
assume axially symmetric anisotropic rotational diffusion for which the
unique principal axis lies along the molecular z-axis, i.e. the axis along which
g is specified. In this case, equation 3 can be rewritten as9' 1

— 2 h [4r21w
L g {(Ag)25,,0 + 3(g)2ö,2}

m

X {1 + (1 + (Otm)'} +

+ — 2.0023)2 (t1 —
211
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where m 0, 2
= 6D + m2(D1 — Dj; (11)

and D1 and D1 are the elements of the rotational diffusion tensor along and
perpendicular to the molecular z-axis, respectively.

We can now calculate AH as a function of the two parameters, r20 and x,
where x is the dimensionless variable

(12)

We find that the minimum calculated value of AH can be made to agree with
the observed value only for unique values of x and t20, i.e. t20 =5.2 x 10h1 s
and x = 1.80. This value of x is equivalent to the statement that D1 = 2.2 D1,
which means that rotational diffusion is twice as fast about the molecular
z-axis as about the other two axes, a result that is quite reasonable for a
planar radical with the molecular z-axis perpendicular to the plane. It should
be reemphasied that we cannot be sure that the rotational diffusion is
axially symmetric, but it should also be noted that the value of the minimum
in AH is a sensitive function of the ratio x. Furthermore, different results
would be obtained if D1 were along either the x or y molecular axes, but it
seems reasonable in this nearly planar molecule to assume that the unique
axis of the diffusion tensor is normal to the plane.

We have assumed that the ratio x is independent of temperature and
viscosity, a result which follows if the Stokes—Einstein relation holds for both
t20 and r22. (In recent work Freed et aL' la have obtained consistent results
in their analysis of the esr spectra of(S03)2N02 in solution by assuming that
x is temperature independent.) We have then used equation 10 to calculate
MI as a function of 'r20 with x = 1.80 (Figure 1). Clearly, the variation of EH
with changes in r20 is very slight near the minimum, and great uncertainty

Table 2. Data for (n-C4H9)4NNiS4C4(CN)4 in CHCI3. g = 2.140, g1 = 2.043, g = 1.996.

Temperature
(K)

t (cP)
T

-
(cP K ) LH (G)

(experimental)
t20 (s)

(from experiment
and Figure 1)

(x 1011)

310.4 0.485 0.00156 6.899 ± 0.066 2.36
306.6 0.505 0.00165 6.801 ± 0.1 2.43
300.8 0.528 0.00176 6.459 ± 0.082 2.80
298.6 0.542 0.00182 6.508 ± 0.1 2.72
286 0.615 0.00215 6.151 ± 0.031 3.25
279.9 0.655 0.00234 6.10 ± 0.05 3.50
268.8 0.74 0.00275 6.117 ± 0.040 3.4
264.1 0.782 0.00297 6.052 ± 0.032 4.49
258.5 0.84 0.00325 6.329 ± 0.016 5.0
251.2 0.92 0.00366 6.557 ± 0.016 5.9
244.8 1.01 0.00413 6.909 ± 0.055 6.3
239.8 1.09 0.00452 7.306 ± 0.022 7.25
233.6 1.19 0.00509 7.919 ± 0.033 8.5
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exists in determining 120 from the measured values of All about this min-
imum. It is interesting to note that at the minimum, the nonsecular contribu-
tion to the linewidth, i.e. those terms with the factor (1 + wrm) ',account
for 5.6 per cent of the width, and the spin rotational contribution, i.e. those
terms with the factor t, accounts for 45 per cent of the width.

We can next use Figure 1 and the experimentally determined linewidths in
Table 1 to obtain 120 as a function of 1/T, and we can combine these results
with equation 1 to determine r3 as a function of (/T), provided we associate
r20 with t We have not measured the translational diffusion constant, and
could not, therefore, determine r directly or its dependence on (i/T). Instead,
we also used the methods outlined above to determine r3 for
(n-C4H9)4N NiS4C4(CN)4 in CHC13, a weakly hydrogen-bonded solvent,
and we assumed that x 1 in the high temperature limit for this solvent.
The data in this solvent are given in Table 2; the All versus t20 curve is very
similar to that in Figure 1 provided the appropriate g-values are used. The
value of x is equal to 2.0 in CHC13. We found by this method that = 64.6 A3
and in CHC13, x is essentially independent of (/T) (Figure 2).

1.L

i h*

T20s
1910 109

1x1O 5x103 1x102 5x102 1x101 5101 lxlO°
/T cP K1

Figure2. versus i1/T for (n-C4H9)4N . NiS4C4(CN)4 in bøth butanol and CFIC13. r3 = 64.6 A3.
x = 1.80. The components of the p-tensor are those given in Table 2.

The values of r3 in butanol can then be combined with the value of r3
determined in CHC13 to yield values of x as a function of i1/T in butanol.
The relative x values are more significant than are the absolute values. In
Figure 2, is plotted as a function of (/T) and it is seen that in butanol it
varies very markedly. Note that because the molecule and the diffusion tensor
are not spherically symmetric, the hydrodynamic radii cannot be simply
related to the molecular radius9.

In the Redfield limit, equations 10 and 3 are valid, but at high viscosity they
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no longer apply. Elsewhere12 we have shown that the Redfield limit applies
provided

2r (2) /([(Ag)2 + 3(ôg)2]/45) <0.45, (13)

at which point the line deviates markedly from a simple Lorentzian. Thus, in
the present case, equation 10 should be applicable provided x20 <4.2 x 10'°s.
The graph in Figure 2 indicates that for r20 <4.2 x 10b0 s, the variation
of in butanol is nearly linear in log(/T). We can plot the straight line

= —0.19 log/T + 0.0402 (14)

through the data. The deviations from this line at r20> 4 x 10_b s can be
attributed to the breakdown of Redfield theory.'2' '

DISCUSSION OF ANISOTROPIC DIFFUSION
In this study, we have shown that in order to fit the butanol data to the

theoretical expression in equation 10, we could set the rotational diffusion
anisotropy coefficient, x = 1.80. We have assumed that x is independent of
/T, and we have neglected the possible small effect of unresolved hyperfine
lines. The solutions were sufficiently dilute (2.82 x iO- M and 4.4 x io M)
so that intermolecular spin interactions could be neglected. In the analysis
we have assumed that even in liquid solution, the elements of the g-tensor
are those determined from measurements made in the glass at 77 K. There
are small shifts in the isotropic g-value but whether or not there are significant
changes in g3, and we do not know. Of course, if they do change
appreciably, our entire analysis is open to question, particularly since the
calculated widths are sensitive to the values of(g — g). In CHC13, x = 2.0.

In CHC13 the parameter is independent of (j/T) as it appears to be for
radicals in many non-hydrogen-bonded or weakly hydrogen-bonded
solvents.4 However, in butanol the parameter appears to vary strongly with
(j/T); in fact, at high temperature (small r20), the variation appears to be
linear in log i7/T. For t20 > 4.2 x 10°s, the variation of x with /T becomes
more rapid, but the theory of line shapes indicates that the simple formulas,
equations 3 and 8, do not hold in this region12' 13, Thus we might attribute the
high temperature variation of , as described in equation 14, to the breakdown
of the Stokes—Einstein—Debye relationship for r20 as a function of ,1/T; and
the additional variation at low temperatures to the breakdown of spin
relaxation theories valid only in the Redfield limit'2.

The parameter x, as defined in equation 2, relates intermolecular torques
to intermolecular forces. At high temperatures the hydrogen bonding in
butanol is less important than at low temperatures, and for anisotropic
solute and solvent molecules, should be relatively large. At low temperatures,
one would expect the translational motion of the solute radical to be greatly
impeded by the strongly hydrogen-bonded solvent network, but the rota-
tional motion of the large solute molecule would be less affected because it
already exsists in a cavity in which the network has been broken and in which
it can rotate relatively freely. Thus should decrease at low temperatures as
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observed. In the following sections, however, we shall argue that may be
constant. In this connection it is interesting to note that in paramagnetic
molecules with nuclear hyperfine interactions, the reorientation time can be
determined independently of the spin rotational effects and a corresponding
can be determined.14 Vanadyl acetylacetonate has been studied in various
solvents and the x values appear to be temperature independent'4 even in
butanol.16 (Some recent preliminary data seems to indicate that there may be
some decrease of x with decreasing temperature'5.) Note also that the
determined for C102 in n-butanol'°, a which is related to spin—rotational
interactions, seems to vary with (/T) whereas in 'normal' solvents this is not
the case4. Furthermore for C102 in tris(butyl) phosphate, a very viscous
solvent, the obtained for spin—rotations differs from that obtained for
reorientation' 6a

Throughout it has been assumed that c is a scalar but in reality it is a
tensorial molecular property. Thus for an ellipsoidal molecule, x should
have two values if diagonalized in the same frame in which the rotational
diffusion tensor is diagonal. Thus r20 and r22 depend upon r020 and

r222 respectively, where r2 and 2n are the appropriate hydrodynamic
radii and s'°. Since we are primarily interested in the temperature variation
of , and not its absolute value, our results are not altered in any fundamental
way by the anisotropy of

SPE4-ROTATIONAL CORRECTIONS
The discrepancy between the minimum AH obtained by means of equation

3 and that observed experimentally can alternatively be explained on the
basis of a correction introduced in the relationship between spin—rotational
correlation times and reorientation correlation times, i.e. corrections to
equation 8. If we assume that the rotating molecule is trapped, i.e. it oscillates
over a small angle, for a time -r and is then released by solvent fluctuations'7
so that free rotation can occur for a very short time r, (-re << ), then the step
model of Ivanov'8 can be applied. The reorientation correlation time, ,
for a second rank tensor is, according to Ivanov,

= -r(l — 2)' (15)

where A2 is a function of the mean rotational jump angle, ,and of the width
a, of the distribution of jump angles. For a rectangular distribution of jump
angles,

_[cos r0 sin + cos 2o sin a + ]. (16)

t For an ellipsoidal molecule9 with principal axes of length x = y = 2b and 2 = 2a,

[4 (a2 — b2)b1 [4 a4 — b4 1= [ 2a — b2S]
r22 =

[j(2a2 — b2)S — 2aj

= Ja — r)(b2 - r)
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If we now assume that

tSR = tf(tf/t) (17)
for t t, and

I(6kT\
E0 =

(18)

where I is a mean moment of inertia, it readily follows that

I
tSR = —

A2) 1] (19)

This equation differs from equation 8 by the factor c(1 —A2) 1, and it is
interesting to study this factor in various limits. For 'small jumps'

urn c(1 — A2)—÷ [1 — '(a/)2] < 1, (20)

and t is smaller than predicted by equation 8. If the width of the distribution
of jumps is very small, then a c, and r is given by equation 8. On the
other hand for appreciable or large 'jumps', and narrow distributions of
jumps, i.e. c' � a2, the quantity (1 — A2)' > 1, and t is larger than
predicted by equation 8.

Although Ivanov's expression was derived for spherical molecules, we
will assume that for asymmetric molecules, 'r and I can replace tand I in
equation 19, where represents the octh molecular axis, but that t0 and

— A2)' are spherically symmetric. (This approximation is compatible
with the assumption that in equations I and 2 is a scalar4' 5) It follows that
equation 3 should be altered by replacing ag2 by g2(1 — A2)'. The cal-
culated minimum value of AH for (n-C4H9)4N NiS4C4(CN)4 in butanol can
then be made to agree with the observed value if c(1 — A2)' = 0.81 and

= 4 x 10 s. For the same radical in CHC13, c(1 — A2) has the same
value. If (1 — A2)' is assumed independent of temperature, the All versust curve can be plotted as shown in Figure 1, and the same results, as described
above in the anisotropic rotational diffusion calculations, are obtained for
the dependence of x upon (i1/T).

If the interpretation given above is responsible for the observed decrease
in the minimum value of All over that predicted by equation 3, then since

— A2)' < 1, equation 20 must be applicable. This implies that re-
orientation takes place by small jumps, and since e(1 — ,%2)_1 = 0.81, the
width of the rectangular distribution of jumps is a = 1.5 c, i.e. the range of
angular jumps i is 0.25 c e < 1.75 o.

The analysis above depends upon the assumption that x is given by
equation 19. In this approximation t is equal to the correlation time for
angular momentum, although r also involves a reorientation contribution;
for small ic the approximation should be valid4' . The treatment above is
in many ways similar to that proposed by Brown, Gutowsky and Shimo-
mura19.
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CONCLUSION

For (n-C4H9)4NNuS4C4(CN)4, the observed decrease in the minimum
AH, below that predicted by the simple theory in equation 3, can be accounted
for either by an anisotropy fri the rotational diffusion (D11 2D1) or by an
appreciable spread in the rotational jumps (a In n-butanol, a
hydrogen-bonded solvent, x appears to decrease with decreasing temperature
but in CHC13, x appears to be constant; thus a modified Debye law apparently
holds in CHC13 but not in n-butanol.

Recent work by Loewenstein etal.2° on the spherical molecules K3W(CN)8
and K4Mo(CN)8 also indicates that the simple theory in equation 3 does not
hold in hydrogen-bonded solvents. Although the problem is complicated by
unresolved N-hyperfine structure, it appears that the minimum AH is larger
than that predicted by equation 3, and that x decreases with decreasing
temperature as it does in the present work. Since the molecule is a spherical
top, the rotational diffusion is probably isotropic and the increase in the
minimummaybeduetothec(1 — ,.2)' factor;ifthisisso,c(1 — )2)_1 > 1,
and rather big rotational jumps must take place. Of course, the increase in the
minimum AH may be due to other relaxation mechanisms21. (Note that in
the present work the observed minimum is less than that predicted on the
basis of equation 3).

Angerman and Jordan16 in their studies of vanadyl acetylacetonate in
alcohols analyzed the spectra in terms of the linewidth formula'4

AH = a' + a" + i'z + yI (21)

where I is the quantum number of the vanadyl spin along the applied field.
They measured /3 and y as functions of temperature and from these they were
able to measure i0 and to determine that is independent of temperature.
With these values of r, (or c), they were able to calculate cx' and thus determine
the residual width, a". If this residual width is attributed to spin—rotational
relaxation8' 14 and if the Hubbard relation, equation 8, holds, then a" is given
by the g2 terms of equation 3. Jordan et a!. found that a" was larger than the
predicted value and the discrepancy increased with decreasing temperature.
It seems unlikely that the discrepancy in cx" is due to other relaxation mech-
anisms because most other possible relaxation mechanisms would become
less important at lower temperatures2 . It can also be seen from the data of
Angerman and Jordan that the minimum AH predicted by equation 3 is
greater than that observed. All these data can be rationalized by assuming
that is constant22 and, hence, the Debye law holds, provided the spin rota-
tional contributions require a temperature dependent c(1 —2) factor.
Near the minimum in tH, it is seen that c(1 — 2) ' < 1 for vanadyl
acetylacetonate as well as for (n-C4H9)4N .NiS4C4(CN)4; as the temperature
decreases, (1 — 2) increases, and the value of a" increases over that
expected on the basis of equation 3.

In the paragraph above, if (a' + a") for vanadyl acetonate were analyzed
as it was for (n-C4H9)4N NiS4C4(CN)4, and the values of T0 and were not
determined from the hyperfine measurements, i.e. from (3 and y, we would
find that x decreased with decreasing temperature. Therefore, we might
speculate that , in fact, is constant in all the experiments described here:
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(n-C4H9)4N .NiS4C4(CN)4, vanadyl acetylacetonate and K3W(CN)8; that
near the minimum AH, the factor e(1 — 12)

1 that alters the spin—rotational
contribution is less than unity for (n-C4H9)4N NiS4C4(CN)4 and vanadyl
acetylacetonate, but greater for K3W(CN); that in hydrogen-bonded solvents

— 12)
1 decreases with increasing temperature, i.e. cc decreases with

increasing temperature. This interpretation is compatible with that of
Gutowsky et al.19 and with the activation energy results of Loewenstein
et al.2°

The results of Burlamacchi and Romanellil6a could also be explained on
the basis of equation 19.

As a final word of caution note that in the study of (n-C4H9)4N NiS4C4(CN)4
in butanol and CHC13, the deviations from equation 3 could be explained
equally well in terms of either anisotropic diffusion or in terms of isotropic
'Ivanov jumps'.
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APPENDiX

n-Butanol viscosity data are available23 to temperatures as low as —5 1°C;
we have measured the viscosity at —80.0°C and found a value of 170 ± 5 cP.
This value lies on the extrapolated log i versus T1 curve obtained from
existing data and this curve was, therefore, used to determine viscosities at
the temperatures indicated in Table 1.

The viscosity measurement at —80.0°C was carried out by measuring the
time required for a fixed volume of n-butanol to flow through a vertical
capillary tube. The system was kept dry by the insertion of CaSO4 between
it and the air. The temperature was controlled in a well-stirred dry-ice—acetone
bath.
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