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Redox phenomena are common in the aqueous environment. We present here experiments 
addressing processes that require light as well as dark processes. Also, examples of pollutant-
treatment schemes employing redox techniques are given. 
 
Nitrate photolysis  
Nitrate ions are photoreactive and produce the highly oxidizing •OH radicals (1,2). We devised a 
simple set up for undergraduate-level experimentation that uses a Hg-lamp to irradiate NO3

- 
solutions contained in quartz test tubes. Oxidation of an added probe, Fe(II) to Fe(III) in the absence 
of air is ascribed to the production of •OH radicals. The Fe(III) thus produced  is monitored at 450 
nm. The (linear) results are shown in Figure 1. 

Fe(II) to Fe(III) in the presence 
of nitrogen

0

0.02

0.04

0.06

0.08

0.1

0 20 40

t, min

[F
e(

III
)]

, M

 
Figure 1. Fe(III) production from the photolysis of nitrates in the presence of Fe(II). 
 
Photoreduction of a metal complex 
The photochemistry of metal complexes often involves charge-transfer transitions, in which the 
excited state undergoes the transfer of electronic charge from an occupied orbital in the ligand to an 
unoccupied orbital in the central metal ion, reducing it to a lower oxidation state. This is depicted in 
the following reaction: 
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[M(n+1)+(L)5L´]n+ + H2O + hv = [Mn+(L)5 H2O ]n+ + (L´)0      (1) 

A typical example is the photolysis of iron carboxylato complexes (i.e., complexes with oxalate, 
aminopolycarboxylates, citrate, humic and fulvic acids), which can occur with high quantum 
yields. A simplified reaction mechanism is (using oxalate as the ligand) (3,4): 

[Fe(III)(C2O4)3]3– + hv = Fe(II) + 2 C2O4
2– + C2O4

– •     (2) 

C2O4
– •  = CO2

- •  +  CO2         (3) 

CO2
- •  +  Fe(III) = Fe(II) + CO2        (4) 

Note that C in the C2O4
– • ligand has an average oxidation state of +7/2, whereas in C2O4

2– it is 
+3. Then, it underwent oxidation in order to reduce Fe(III). We designed an experiment in which 
an [Fe(III)EDTA] complex is exposed to light (either natural or artificial) and decomposed to 
produce Fe(II), which reacts with K3[Fe(CN)6] as indicator, yielding a highly colored (blue) 
solution (5). 
 
Photodissolution 
Many solid iron compounds are photoreactive. We have worked on the photodissolution in the 
Fe(III)oxide-oxalato as a function of pH. We analyzed the oxalato speciation and found that the 
highest amount of Fe(II) produced (as measured by the standard colorimetric method with o-
phenanthroline) corresponds to the pH region where the hydrogen oxalate anion predominates.  
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Oxalate Species Distribution Diagram
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Figure 2. Distribution diagram for oxalate species (6). 

 

[Fe(II)] vs. time
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Figure 3. Photoproduction of Fe(II) as a function of pH and time. 
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Figure 4. Pourbaix diagram of Cu species in water (8). 

 
Pourbaix diagrams 
Potential-pH diagrams are of paramount importance in Environmental studies. We have devised an 
experiment in which students perform five chemical and five elecrochemical transitions in the Cu-
Pourbaix diagram (Figure 4). 
 
 
POLLUTANT-TREATMENT SCHEMES BASED ON REDOX REACTIONS 
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Fenton reaction 
Organic pollutants and hazardous wastes can be mineralized upon oxidation by powerful 
oxidizing agents like hydrogen peroxide, which is capable of self-decomposing to produce a 
powerful oxidizer intermediate: the hydroxyl radical (•OH). The reaction we use is 
 
Fe2+ + H2O2 → Fe3+ + OH– + •OH             (5)           

We demonstrate the effect of adding H2O2 to a surrogate pollutant, i.e., an acidified 0.003% 
solution of rhodamine B (sodium salt of 4-[[(4-Dimethylamino)phenyl]-azo]benzene-sulfonic 
acid) under different conditions. The qualitative results obtained are shown in Table 1. We have 
also reported quantitative results elsewhere (9). 

Table 1. Qualitative results from Fenton Chemistry. 
Reaction 

vial 
Effect Major 

discoloration 
Bubbling BaCO3 

precipitate 
A Blank No No No 
B Fe2+ alone  No No No 
C H2O2 alone  No No No 
D H2O2 + Mn2+ No Yes No 
E H2O2 + Fe2+  Yes Yes Yes 
F Sunlight alone No No No 
G H2O2 + Sunlight Yes Yes Yes 

 
Photocatalysis 
The simultaneous oxidation of an organic compound (ethanol) and the reduction of a metal ion 
(Cu2+) are photocatalytically performed in an aqueous slurry containing TiO2 irradiated with UV 
light. This produces electrons (to reduce the metal ions) and holes (to oxidize the organic molecule). 
The experimental conditions are varied in such a way that only one of the qualitative tests (tube #5, 
see Table 2) gives a color change, indicative of the formation of a violet Cu+-TiO2 complex. We 
have reported a quantitative procedure elsewhere (10). 
 
Table 2. Experimental design for simultaneous photocatalysis. 
Tube # TiO2 Cu(II) ethanol N2 hv 

      
1 P  P P P 
2 P P  P P 
3 P P P  P 
4 P P P P  
5 P P P P P 
6  P P P P 
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Chemical oxidation: preparation of oxidants/disinfectants 
a) Chlorine dioxide 
Water treatment normally involves the use of oxidizing/disinfecting agents. A greener chlorine-
based alternative to chlorine itself is chlorine dioxide, ClO2 (also called chlorine peroxide). We 
produce chlorine dioxide mainly though the chemical and electrochemical reduction of Cl(V) or the 
oxidation of Cl(III). See ref. (11). 
b) Ozone 
We produce it electrochemically in the undergraduate laboratory with simple equipment and under 
very mild conditions. We designed tests to characterize it, observe its action in simulated 
environmental applications, and measure its rate of production (see 12).  
c) Ferrate 
Ferrate, a powerful oxidizing/disinfecting agent, is synthesized chemically and electrochemically in 
the undergraduate laboratory with simple equipment and under very mild conditions. We designed 
tests to characterize it and to observe its action in simulated environmental applications (see 13).  
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