REDOX CHEMISTRY AND THE AQUATIC ENVIRONMENT
EXAMPLES AND MICROSCALE EXPERIMENTS.

Jorge G. Ibanez
Mexican Microscale Chemistry Center
Dept. of Chemical and Engineering Sciences
Universidad Iberoamericana
Prolongacion Reforma # 880, 01210 Mexico, D.F. MEXICO
jorge.ibanez@uia.mx

Redox phenomena are common in the aqueous environment. We present here experiments addressing processes that require light as well as dark processes. Also, examples of pollutant-treatment schemes employing redox techniques are given.

Nitrate photolysis
Nitrate ions are photoreactive and produce the highly oxidizing \(\cdot \text{OH} \) radicals \((1,2)\). We devised a simple set up for undergraduate-level experimentation that uses a Hg-lamp to irradiate NO\(_3^-\) solutions contained in quartz test tubes. Oxidation of an added probe, Fe(II) to Fe(III) in the absence of air is ascribed to the production of \(\cdot \text{OH} \) radicals. The Fe(III) thus produced is monitored at 450 nm. The (linear) results are shown in Figure 1.

![Graph](image)

Figure 1. Fe(III) production from the photolysis of nitrates in the presence of Fe(II).

Photoreduction of a metal complex
The photochemistry of metal complexes often involves charge-transfer transitions, in which the excited state undergoes the transfer of electronic charge from an occupied orbital in the ligand to an unoccupied orbital in the central metal ion, reducing it to a lower oxidation state. This is depicted in the following reaction:
[M^{(n+1)+}(L)_3L^{'n+} + H_2O + h\nu = [M^{n+}(L)_5H_2O]^{n+} + (L^{'})^0 \quad (1)

A typical example is the photolysis of iron carboxylato complexes (i.e., complexes with oxalate, aminopolyoxalates, citrate, humic and fulvic acids), which can occur with high quantum yields. A simplified reaction mechanism is (using oxalate as the ligand) (3,4):

\[[\text{Fe(III)}(C_2O_4)_3]^{3-} + h\nu = \text{Fe(II)} + 2 \text{C}_2\text{O}_4^{2-} + \text{C}_2\text{O}_4^{-\bullet} \quad (2) \]

\[\text{C}_2\text{O}_4^{-\bullet} = \text{CO}_2^{-\bullet} + \text{CO}_2 \quad (3) \]

\[\text{CO}_2^{-\bullet} + \text{Fe(III)} = \text{Fe(II)} + \text{CO}_2 \quad (4) \]

Note that C in the C_2O_4^{-\bullet} ligand has an average oxidation state of +7/2, whereas in C_2O_4^{2-} it is +3. Then, it underwent oxidation in order to reduce Fe(III). We designed an experiment in which an [Fe(III)EDTA] complex is exposed to light (either natural or artificial) and decomposed to produce Fe(II), which reacts with K_3[Fe(CN)_6] as indicator, yielding a highly colored (blue) solution (5).

Photodissolution

Many solid iron compounds are photoreactive. We have worked on the photodissolution in the Fe(III)oxide-oxalato as a function of pH. We analyzed the oxalato speciation and found that the highest amount of Fe(II) produced (as measured by the standard colorimetric method with o-phenanthroline) corresponds to the pH region where the hydrogen oxalate anion predominates.
Figure 2. Distribution diagram for oxalate species (6).

Figure 3. Photoproduction of Fe(II) as a function of pH and time.
Figure 4. Pourbaix diagram of Cu species in water (8).

Pourbaix diagrams
Potential-pH diagrams are of paramount importance in Environmental studies. We have devised an experiment in which students perform five chemical and five electrochemical transitions in the Cu-Pourbaix diagram (Figure 4).

POLLUTANT-TREATMENT SCHEMES BASED ON REDOX REACTIONS
Fenton reaction
Organic pollutants and hazardous wastes can be mineralized upon oxidation by powerful oxidizing agents like hydrogen peroxide, which is capable of self-decomposing to produce a powerful oxidizer intermediate: the hydroxyl radical (•OH). The reaction we use is

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \cdot \text{OH} \]

(5)

We demonstrate the effect of adding H₂O₂ to a surrogate pollutant, i.e., an acidified 0.003% solution of rhodamine B (sodium salt of 4-[[4-(Dimethylamino)phenyl]-azo]benzene-sulfonic acid) under different conditions. The qualitative results obtained are shown in Table 1. We have also reported quantitative results elsewhere (9).

Table 1. Qualitative results from Fenton Chemistry.

<table>
<thead>
<tr>
<th>Reaction vial</th>
<th>Effect</th>
<th>Major discoloration</th>
<th>Bubbling</th>
<th>BaCO₃ precipitate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Blank</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B Fe²⁺ alone</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>C H₂O₂ alone</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>D H₂O₂ + Mn²⁺</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>E H₂O₂ + Fe²⁺</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F Sunlight alone</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>G H₂O₂ + Sunlight</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Photocatalysis
The simultaneous oxidation of an organic compound (ethanol) and the reduction of a metal ion (Cu²⁺) are photocatalytically performed in an aqueous slurry containing TiO₂ irradiated with UV light. This produces electrons (to reduce the metal ions) and holes (to oxidize the organic molecule). The experimental conditions are varied in such a way that only one of the qualitative tests (tube #5, see Table 2) gives a color change, indicative of the formation of a violet Cu⁺-TiO₂ complex. We have reported a quantitative procedure elsewhere (10).

Table 2. Experimental design for simultaneous photocatalysis.

<table>
<thead>
<tr>
<th>Tube #</th>
<th>TiO₂</th>
<th>Cu(II)</th>
<th>ethanol</th>
<th>N₂</th>
<th>hν</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Chemical oxidation: preparation of oxidants/disinfectants

a) Chlorine dioxide
Water treatment normally involves the use of oxidizing/disinfecting agents. A greener chlorine-based alternative to chlorine itself is chlorine dioxide, ClO₂ (also called chlorine peroxide). We produce chlorine dioxide mainly through the chemical and electrochemical reduction of Cl(V) or the oxidation of Cl(III). See ref. (11).

b) Ozone
We produce it electrochemically in the undergraduate laboratory with simple equipment and under very mild conditions. We designed tests to characterize it, observe its action in simulated environmental applications, and measure its rate of production (see 12).

c) Ferrate
Ferrate, a powerful oxidizing/disinfecting agent, is synthesized chemically and electrochemically in the undergraduate laboratory with simple equipment and under very mild conditions. We designed tests to characterize it and to observe its action in simulated environmental applications (see 13).

Acknowledgements
I thank the Turkish Chemical Society and the CCE-IUPAC for their kind invitation to present this talk at the 18th IUPAC International Conference on Chemical Education, and the following people for co-authorship in different papers, experimental assistance, helpful comments, etc.: Mono M. Singh, Zvi Szafran, Ronald Pike (Merrimack College, USA); Bruce Mattson, Scot Eskesstrand, Michael P. Anderson, Jiro Fujita, Trisha Hoette (Creighton University, USA); Krishnan Rajeshwar (University of Texas at Arlington, USA); Michael Tausch (Gerhard Mercator University, Germany), Christer Gruvberg (University of Halmstad, Sweden); Adolfo de Pablos-Miranda (Institut Quimic de Sarria, Spain); Alberto Rojas-Hernández, Ma. Teresa Ramirez, Ignacio Gonzalez (Universidad Autonoma Metropolitana-Iztapalapa, Mexico City); Alejandro Alatorre (Universidad de Guanajuato, Mexico); Arturo Fregoso, Margarita Hernandez, Lorena Pedraza, Rodrigo Mayen, Carlos Navarro, Monica Tellez, Diana Alvarez, Sebastian Terrazas, Rodrigo Mena-Brito, Maria Teresa Moran, Alejandro Moreno, Clemente Miranda, Jose Topete, Iraida Valdovinos, Maria Lozano, Luis C. Gonzalez, Karla Garcia, Elizabeth Garcia (Universidad Iberoamericana, Mexico City).

Funding for these projects has been provided by Universidad Iberoamericana, CONACYT (Mexico), the US National Science Foundation, the Fulbright Program of the US Department of State, Merrimack College (USA), the National Microscale Chemistry Center (USA), Creighton Jesuit University (USA), Loyola University of Chicago (USA), The Linnaeus-Palme program of the Swedish Agency for International Development (Sweden), and the Alfa Program of the European Commission.

Literature references

8. HSC Chemistry 4.0 Commercial program. Outokumpu Research OY, PO Box 60, FIN-28101, Pori, Finland.

