Thermodynamics and non/equilibrium criteria for development
and application of supplemented phase diagrams

Database
  4. Methodology

  • Ablett, S., Barnes, D.J., Davies, A.P., Ingman, S.J. & Patient, D.W. 1988. C13 and pulse NMR spectroscopy of wheat proteins. J. Cereal Sci. 7, 11-20

  • Alden, M. and Hillgren, A. 1998. Investigation of aqueous solutions by modulated temperature DSC. Thermochim. Acta 311:51-60.
  • Angberg, M. 1995. Lactose and thermal analysis with special emphasis on microcalorimetry. Thermochim. Acta 248, 161-176.
  • Barker, S.A., He, R., and Craig, D.Q.M. 2001. Low frequency dielectric investigations into the relaxation behavior of frozen PVP-water systems. J. Pharm. Sci. 90:157-164.
  • Baro, M.D., Clavaguera, N., Bordas, S., Clavaguera-Mora, M.T. and Casa-Vazquez, J. 1977. Evaluation of crystallization kinetics by DTA. J. Thermal. Anal. 11, 271-76.
  • Baroni, A.F., Sereno, A.M., and Hubinger, M.D. 2003. Thermal transitions of osmotically dehydrated tomato by MTDSC. Thermochim. Acta 395:237-249.
  • Bell, L.N. and Touma, D.E. 1996. Tgs determined using a temperature-cycling DSC. J. Food Sci. 61:807-828.
  • Bell, L.N., Bell, H.M., and Glass, T.E. 2002. Water mobility in glassy and rubbery solids as determined by O17 NMR: Impact on chemical stability. Lebensm. Wiss. Technol. 35:108-113.
  • Belton, P.S. 1990. Can NMR give useful information about the state of water in foodstuffs? Comments Agric. Food Chem. 2, 179-209.
  • Belton, P.S., Ring, S.G., Botham, R.L., and Hills, B.P. 1991. Multinuclear NMR studies of water in solutions of simple carbohydrates. II. O-17 relaxation. Mol. Phys. 72: 1123-1134.
  • Belton, P.S. and Gil, A.M. 1994. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34:957-961
  • Berail, J., Caron, A., Mifsud, H., and Miguel, L. 1992. Study of the behavior of aqueous solutions at low temperature by differential calorimetric analysis. Calorim. Anal. Therm. 23, 455-462.
  • Berens, A. & H.B. Hopfenberg. 1980. Introduction and measurement of glassy state relaxations by vapor sorption methods. Stud. Phys. Theoret. Chem. 10, 77-94.
  • Bernazzani, P., Chapados, C., and Delmas, G. 2000. Double-helical network in amylose as seen by slow calorimetry and FTIR. J. Polym. Sci.:B: Polym. Phys. 38:1662-1677.
  • Biliaderis, C.G. & Vaughan, D.J. 1987. ESR studies of starch-water-probe interactions. Carbohydr. Polym. 7, 51-70.
  • Biliaderis, C.G. 1992. Characterization of starch networks by small strain dynamic rheometry. In Developments in Carbohydrate Chemistry (eds. Alexander, R.J. and Zobel, H.F.), pp. 87-135, AACC, St. Paul, MN.
  • Blanshard, J.M.V., Derbyshire, W., MacNaughtan, W., Ablett, S., Martin, D., and Izzard, M.J. 1999. 1H relaxation of hydrated carbohydrate systems. Adv. Magn. Reson. Food Sci. 231:95-104.
  • Blond, G., Ivanova, K., and Simatos, D. 1994. Reliability of DMTA for the study of frozen aqueous systems. J. Rheol. 38, 1693-1703.
  • Blond, G. and Simatos, D. 1998. Optimized thermal treatments to obtain reproducible DSC thermograms with sucrose + dextran frozen solutions. Food Hydrocol. 12:133-139.
  • Boller, A., Schick, C., and Wunderlich, B. 1995. Modulated DSC in the glass transition region. Thermochim. Acta, 226:97-111.
  • Bone, S. & Pethig, R. 1985. Dielectric Studies of Protein Hydration and Hydration-Induced Flexibility. J. Mol. Biol. 181, 323-26.
  • Bot, A. 2003. DSC study on the effects of frozen storage on gluten and dough. Cereal Chem. 80:366-370.
  • Buitink, J., Hemminga, M.A. and Hoekstra, F.A. 1999. Characterization of molecular mobility in seed tissues: an EPR spin-probe study. Biophys. J. 76:3315-3322.
  • Buitink, J., Dzuba, S.A., Hoekstra, F.A., and Tsvetkov, Y.D. 2000e. Pulsed EPR spin-probe study of intracellular glasses in seed and pollen. J. Magn. Res. 142:364-368.
  • Butler, M.F. and Cameron, R.E. 2000. A study of the molecular relaxations in solid starch using dielectric spectroscopy. Polymer 41:2249-2263.
  • Cairns, P., Morris, V.J., Singh, N., and Smith, A.C. 1997. X-ray diffraction studies on extruded maize grits. J. Cereal Sci. 26:223-227.
  • Caldwell, K.B., Goff, H.D. and Stanley, D.W. 1992. A low-temperature SEM study of ice cream. II. Influence of selected ingredients and processes. Food Structure, 11, 11-23.
  • Cameron, R.E. and Donald, A.M. 1991. Small-angle X-ray scattering and DSC from starch and retrograded starch. In Food Polymers, Gels and Colloids, E. Dickinson, ed., Royal Society Chemistry, Cambridge, 301-309.
  • Cameron, R.E. and Donald, A.M. 1992. A small angle X-ray scattering study of the annealing and gelatinization of starch. Polymer, 33, 2628-2635.
  • Cameron, R.E. and Donald, A.M. 1993. A small-angle X-ray scattering study of starch gelatinization in excess and limiting water. J. Polym. Sci. B: Polym. Phys. 31, 1197-1203.
  • Campanella, O.H. and Peleg, M. 1997. On the tan delta-frequency relationship of foods and agricultural commodities. J. Text. Stud. 28:585-592.
  • Cappon, J.J., Hebblethwaite, J., Blanshard, J.M.V., and Morris, P.G. 1994. Enzyme activity in low-water-content biopolymer systems studied by 19F NMR. In Proceedings Second Int. Conf. on Applications of Magnetic Resonance in Food Science, Aveiro, Portugal, Sept. 19-21, Royal Society of Chemistry, Cambridge.
  • Cassel, B. and Twombly, B. 1991. Glass transition determination by TMA, a DMA, and a DSC. In Materials Characterization by Thermomechanical Analysis, ASTM STP 1136, eds. Riga, A.T. and Neag, C.M., ASTM, Philadelphia, pp. 108-119.
  • Castelli, F., Gilbert, S.M., Caruso, S., Maccarrone, D.E., and Fisichella, S. 2000. Thermoanalytical characterization of high MW glutenin subunits - water effect on their glass transition. Thermochim. Acta 346:153-160.
  • Champion, D., Hervet, H., Blond, G., and Simatos, D. 1995. Comparison between two methods to measure translational diffusion of a small molecule at subzero temperature. J. Agric. Food Chem. 43:2887-2891.
  • Champion, D., Maglione, M., Niquet, G., Simatos, D., and Le Meste, M. 2003. Study of alpha- and beta-relaxation processes in supercooled sucrose liquids. J. Therm. Anal. Calorim. 71:249-261.
  • Chan, R.K., Pathmanathan, K. & Johari, G.P. 1986. Dielectric Relaxations in the Liquid and Glassy States of Glucose and its Water Mixtures. J. Phys. Chem. 90, 6358-62.
  • Charoenrein, S. and Reid, D.S. 1989. The use of DSC to study the kinetics of heterogeneous and homogeneous nucleation of ice in aqueous systems, Thermochim. Acta 156, 373-81.
  • Chen, T. and Oakley, D.M. 1995. Thermal analysis of proteins of pharmaceutical interest. Thermochim. Acta 248, 229-244.
  • Cheng, S.Z.D., 1989. Thermal characterization of macromolecules, J. Appl. Polym. Sci.:Appl. Polym. Symp. 43, 315-71.
  • Chinachoti, P., White, V.A., Lo, L., and Stengle, T.R. 1991. Application of high-resolution C13, O17, and Na23 NMR to study the influences of water, sugar, and NaCl on starch gelatinization. Cereal Chem. 68: 238-244.
  • Craig, D.Q.M., Barsnes, M., Royall, P.G., and Kett, V.L. 2000. An evaluation of the use of modulated temperature DSC as a means of assessing the relaxation behavior of amorphous lactose. Pharm. Res. 17:696-700.
  • Craig, D.Q.M., Kett, V.L., Andrews, C.S., and Royall, P.G. 2002. Pharmaceutical applications of micro-thermal analysis. J. Pharm. Sci. 91:1201-1213.
  • Crofton, D.J. & R.A. Pethrick. 1982. Dielectric Studies of Cellulose and Derivatives: 2. Effects of Pressure and Temperature on Relaxation Behavior. Polymer 23, 1609-14.
  • Cruz, I.B., Oliveira, J.C., and MacInnes, W.M. 2001. DMTA of aqueous sugar solutions containing fructose, glucose, sucrose, maltose and lactose. Int. J. Food Sci. Technol. 36:539-550.
  • De Meuter, P., Rahier, H., and Van Mele, B. 1999. The use of modulated temperature DSC for the characterization of food systems. Int. J. Pharm. 192:77-84.
  • Deppe, D.D., Dhinojwala, A., and Torkelson, J.M. 1996. Small molecule probe diffusion in thin polymer films near the glass transition: a novel approach using fluorescence nonradiative energy transfer. Macromolecules 29:3898-3908.
  • Deriu, A., Cavatorta, F., Di Bari, M., and Albanese, G. 2001. Dynamics of hydrated polysaccharides investigated by elastic and quasielastic neutron scattering. In Conf. Proceed. Vol. 76, Ital. Phys. Soc., eds. M. Nardone and M.A. Ricci, pp. 65-76.
  • Duddu, S. and Sokoloski, T.D. 1995. Dielectric analysis in the characterization of amorphous pharmaceutical solids. 1. Molecular mobility in PVP-water systems in the glassy state. J. Pharm. Sci. 84:773-776.
  • Durrani, C.M., Prystupa, D.A., Donald, A.M., and Clark, A.H. 1993. Phase diagram of mixtures of polymers in aqueous solution using FTIR spectroscopy. Macromolecules 26, 981-987.
  • Dzuba, S.A., Golovina, Y.A., and Tsvetkov, Y.D. 1993. Echo-induced EPR spectra of spin probes as a method for identification of glassy states in biological objects. J. Magnet. Reson. B101, 134-138.
  • Dzuba, S.A., Golovina, Y.A., and Tsvetkov, Y.D. 1993. Spin-probe ESR study of some sugars in connection with desiccation tolerance of biological objects. Appl. Magn. Reson. 5, 31-37.
  • El Moznine, R., Smith, G., Polygalov, E., Suherman, P.M., and Broadhead, J. 2003. Dielectric properties of residual water in amorphous lyoplilized mixtures of sugar and drug. J. Phys. D: Appl. Phys. 36:330-335.
  • Engelder, D.S. and Buffler, C.R. 1991. Measuring dielectric properties of food products at microwave frequencies. Microwave World, 12(2), 6-15.
  • Evans, S.A. 1993. Pharmaceutical applications of dielectric analysis: investigation of model frozen aqueous systems intended for lyophilization. Doctoral thesis, Rutgers Univ., NJ.
  • Evans, S.A., Morris, K.R., MacKenzie, A.P., and Lordi, N.G. 1995. Dielectric characterization of thermodynamic first order events in model frozen systems intended for lyophilization. PDA J. Pharm. Sci. Tech. 49:2-8.
  • Goodfellow, B.J. and Wilson, R.H. 1990. A Fourier transform IR study of the gelation of amylose and amylopectin. Biopolymers 30: 1183-1189.
  • Gunasekaran, S. and Ak, M.M. 2000. Dynamic oscillatory shear testing of foods -selected applications. Trends Food Sci. Technol. 11:115-127.
  • Hagen, R., Salmen, L., Lavebratt, H., and Stenberg, B. 1994. Comparison of dynamic mechanical measurements and Tg determinations with two different instruments. Polym. Test. 13:113-128.
  • Hallberg, L.M. and Chinachoti, P. 1992. DMA for glass transitions in long shelf-life bread. J. Food Sci., 57, 1201-1204.
  • Hancock, B.C., Dalton, C.R., Pikal, M.J., and Shamblin, S.L. 1998. A pragmatic test of a simple calorimetric method for determining the fragility of some amorphous pharmaceutical materials. Pharm. Res. 15:762-767.
  • Hancock, B.C., Dupuis, Y., and Thibert, R. 1999. Determination of the viscosity of an amorphous drug using TMA. Pharm. Res. 16:672-675.
  • Hancock, B.C. and Shamblin, S.L. 2001. Molecular mobility of amorphous pharmaceuticals determined using DSC. Thermochim. Acta 380:95-107.
  • Harwalkar, V.R. and Ma, C.Y. 1990.Thermal Analysis of Foods, Elsevier Applied Science, London.
  • Hatakeyama, H. 1992. Thermal analysis of lignin in the solid state. In Methods in Lignin Chemistry (eds. S.Y. Lin and C.W. Dence), Springer-Verlag, Berlin pp. 200-214.
  • Hatakeyama, T., Nakamura, K. & Hatakeyama, H. 1988. Determination of bound water content in polymers by DTA, DSC, and Tg. Thermochim. Acta 123, 153-61
  • Hatley, R. H. M., and Franks, F. 1991. Applications of DSC in the development of improved freeze-drying processes for labile biologicals. J. Therm. Anal. 37, 1905-1914.
  • Hays, D.L. and Fennema, O. 1982. Methodology for determining unfreezable water in protein suspensions by low-temperature NMR. Arch. Biochem. Biophys. 213, 1-6.
  • He, R. and Craig, D.Q.M. 2001. An investigation into the thermal behavior of an amorphous drug using low frequency dielectric spectroscopy and MTDSC. J. Pharm. Pharm. 53:41-48.
  • Hemminga, M.A. and van den Dries, I.J. 1998. Spin label applications to food science. Biol. Magn. Reson. 14:339-366.
  • Hemminga, M.A., van den Dries, I.J., Magusin, P.C.M.M., van dusschoten, D., and van den Berg, C. 1999. Molecular mobility in food components as studied by magnetic resonance spectroscopy. In Water Management in the Design and Distribution of Quality Foods, eds. Y.H. Roos, R.B. Leslie and P.J. Lillford, Technomic, Lancaster, pp. 255-265.
  • Her, L.M. and Nail, S.L. 1994. Measurement of glass transition temperatures of freeze-concentrated solutes by DSC. Pharmaceut. Res. 11, 54-59.
  • Her, L.M., Jefferis, R.P., Gatlin, L.A., Braxton, B., and Nail, S.L. 1994. Measurement of Tgs in freeze-concentrated solutions of non-electrolytes by electrical thermal analysis. Pharm. Res. 11, 1023-1029.
  • Herrera, J.J., Pastoriza, L., and Sampedro, G. 2001. A DSC study on the effects of various maltodextrins and sucrose on protein changes in frozen-stored minced blue whiting muscle. J. Sci. Food Agric. 81:377-384.
  • Hey, J.M., Mehl, P.M., and MacFarlane, D.R. 1997. A combined DSC-optical video microscope for crystallization studies. J. Therm. Anal. 49:991-998.
  • Hill, V.L., Craig, D.Q.M., and Feely, L.C. 1998. Characterization of spray-dried lactose using MDSC. Int. J. Pharm. 161:95-107.
  • Hills, B.P., Takacs, S.F., and Belton, P.S., 1990. A new interpretation of proton NMR relaxation time measurements of water in food, Food Chem. 37, 95-111.
  • Hills, B.P. and Le Floch, G. 1994. NMR studies of non-freezing water in cellular plant tissue. Food Chem. 51, 331-336.
  • Hills, B.P. and Pardoe, K. 1995. Proton and deuterium NMR studies of the glass transition in a 10% maltose-water solution. J. Mol. Liquids 63:229-237.
  • Hills, B.P., Manning, C.E., Ridge, Y., and Brocklehurst, T. 1996. NMR water relaxation, water activity and bacterial survival in porous media. J. Sci. Food Agric. 71:185-194.
  • Hills, B.P., Tang, H., Belton, P.S., Khaliq, A., Harris, R.K. 1998. NMR O17 studies of the state of water in a saturated sucrose solution. J. Mol. Liq. 75:45-59.
  • Hills, B.P., Wang, Y.L., and Tang, H.R. 2001. Molecular dynamics in concentrated sugar solutions and glasses: an NMR field cycling study. Molec. Phys. 99:1679-1687.
  • Hiltner, A., Shiraishi, H., Nomura, S., and Baer, E. 1978. Nature of biopolymer-water association by dynamic mechanical spectroscopy. Midland Macromol. Monogr. 4:249.
  • Hiltz, J.A. and Keough, I.A. 1992. A study of the effect of absorbed water on the Tg of a poly(amideimide) using DMA and DSC. Thermochim. Acta 212, 151-162.
  • Hofer, K., Perez, J., and Johari, G.P. 1991. Detecting enthalpy "cross-over" in vitrified solids by DSC. Phil. Mag. Letters 64: 37-43.
  • Huang, W.J., Frick, T.S., Landry, M.R., Lee, J.A., Lodge, T.P., and Tirrell, M. 1987. Tracer diffusion measurement in polymer solutions near the glass transition by forced Rayleigh scattering, AIChE Journal, 33, 573-82.
  • Huson, M.G. 1991. DSC investigation of the physical aging and deaging of wool. Polym. Intl. 26, 157-161.
  • Jacobson, M.R. and BeMiller, J.N. 1998. Method for determining the rate and extent of accelerated starch retrogradation. Cereal Chem. 75:22-29.
  • Jagannath, J.H., Jayaraman, K.S., Arya, S.S., and Somashekar, R. 1998. DSC and wide-angle X-ray scattering studies of bread staling. J. Appl. Polym. Sci. 67:1597-1603.
  • Jenkins, P.J. and Donald, A.M. 1996. Application of small-angle neutron scattering to the study of the structure of starch granules. Polymer 37:5559-5568.
  • Johari, G.P., Ram, S., Astl, G., and Mayer, E. 1990. Characterizing amorphous and microcrystalline solids by calorimetry. J. Non-Crystal. Solids 116: 282-285.
  • John, A. and Shastri, P.N. 1998. Studies on food macromolecules by DSC: a critical appraisal. J. Food Sci. Technol. 35:1-14.
  • Kadiyala, R.K. and Angell, C.A. 1984. Separation of nucleation from crystallization kinetics by two-step calorimetry experiments. Colloids & Surfaces 11, 341-51.
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., Ablett, S., Blanshard, J.M.V., and Lillford, P.J. 1992. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym., 18, 77-88.
  • Kalichevsky, M.T., Blanshard, J.M.V., and Marsh, R.D.L. 1993. Applications of mechanical spectroscopy to the study of glassy biopolymers and related systems. In The Glassy State in Foods (Blanshard, J.M.V. and Lillford, P.J., Eds.), Nottingham University Press, Loughborough, pp. 133-156.
  • Karim, A.A., Norziah, M.H., and Seow, C.C. 2000. Methods for the study of starch retrogradation. Food Chem. 71:9-36.
  • Kasraian, K., Spitznagel, T.M., Juneau, J.A., and Yim, K. 1998. Characterization of the sucrose/ glycine/water system by DSC and freeze-drying microscopy. Pharm. Devel. Technol. 3:233-239.
  • Keely, C.M., Zhang, X., and McBrierty, V.J. 1995. Hydration and plasticization effects in cellulose acetate: a solid-state NMR study. J. Mol. Struct. 355:33-46.
  • Kerr, W.L. and Reid, D.S. 1994. The use of stepwise DSC for thermal analysis of foods. Thermochim. Acta 246, 299-308.
  • Kim, J.O., Kim, W.S., and Shin, M.S. 1997. A comparative study on retrogradation of rice starch gels by DSC, X-ray, and alpha-amylase methods. Starke 49:71-75.
  • Kim, Y.R., Yoo, B.S., Cornillon, P., and Lim, S.T. 2004. Effect of sugars and sugar alcohols on freezing behavior of corn starch gel as monitored by time domain 1H NMR spectroscopy. Carbohydr. Polym. 55:27-36.
  • Kim-Shin, M.S., Mari, F., Rao, P.A., Stengle, T.R., and Chinachoti, P. 1991. O17 NMR studies of water mobility during bread staling. J. Agric. Food Chem. 39: 1915-1920.
  • Kou, Y., Molitor, P.F., and Schmidt, S.J. 1999. Mobility and stability characterization of model food systems using NMR, DSC, and conidia germination techniques. J. Food Sci. 64:950-959.
  • Kou, Y., Dickinson, L.C., and Chinachoti, P. 2000. Mobility characterization of waxy corn starch using wide-line 1H NMR. J. Agric. Food Chem. 48:5489-5495.
  • Kruiskamp, P.H., Smits, A.L.M., van Soest, J.J.G., and Vliegenthart, J.F.G. 2001. The influence of plasticizer on molecular organization in dry amylopectin measured by DSC and solid-state NMR spectroscopy. J. Ind. Microbiol. Biotechnol. 26:90-93.
  • Kulik, A.S., de Costa, J.R.C., and Haverkamp, J. 1994. Water organization and molecular mobility in maize starch investigated by two-dimensional solid-state NMR. J. Agric. Food Chem. 42, 2803-2807.
  • Kulik, A.S. and Haverkamp, J. 1997. Molecular mobility of polysaccharide chains in starch investigated by two-dimensional solid-state NMR spectroscopy. Carbohydr. Polym. 34:49-54.
  • Kumagai, H. and Kumagai, H. 2002. Analysis of molecular or ion mobility in glassy and rubbery foods by electric and proton-NMR measurements. Food Sci. Technol. Res. 8:95-102.
  • Kure, J.M., Pierlot, A.P., and Russell, I.M. 1997. The glass transition of wool: an improved determination using DSC. Textile Res. J. 67:18-22.
  • Kyritsis, A., Pissis, P., Ribelles, J.L.G., and Pradas, M.M. 1995. Polymer-water interactions in poly(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric, and sorption isotherm measurements. Polymer Gels and 3:445-469.
  • Laaksonen, T.J. and Roos, Y.H. 2000. Thermal, dynamic-mechanical, and dielectric analysis of phase and state transitions of frozen wheat doughs. J. Cereal Sci. 32:281-292.
  • Laaksonen, T.J., Kuuva, T., Jouppila, K., and Roos, Y.H. 2002. Effects of arabinoxylans on thermal behavior of frozen wheat doughs as measured by DSC, DMA, and DEA. J. Food Sci. 67:223-230.
  • Lai, H.M. and Schmidt, S.J. 1991. Proton, deuterium, and O17 NMR relaxation studies of lactose- and sucrose-water systems. J. Agric. Food Chem. 39: 1921-1926.
  • Lai, H.M. and Schmidt, S.J. 1993. Mobility of water in various sugar-water systems as studied by oxygen-17 NMR. Food Chem., 46, 55-60.
  • Lai, H.M., Jeng, S.T., and Lii, C.Y. 1998. O17 NMR and DSC for studying quality of taro paste as affected by processing and storage. Lebensm. Wiss. Technol. 31:57-63.
  • Lai, V.M.F. and Lii, C.Y. 1999. Effects of MDSC variables on thermodynamic and kinetic characteristics during gelatinization of waxy rice starch. Cereal Chem. 76:519-525.
  • Lammert, A.M., Lammert, R.M., and Schmidt, S.J. 1999. Physical aging of maltose glasses as measured by standard and modulated DSC. J. Therm. Anal. Calorim. 55:949-975.
  • Le Bail, P., Bizot, H., Ollivon, M., Keller, G., Bourgaux, C., and Buleon, A. 1999. Monitoring the crystallization of amylose-lipid complexes during maize starch melting by synchrotron X-ray diffraction. Biopolymers 50:99-110.
  • Le Botlan, D., Rugraff, Y., Martin, C., and Colonna, P. 1998. Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy. Carbohydr. Res. 308:29-36.
  • Le Dean, A., Mariette, F., Lucas, T., and Marin, M. 2001. Assessment of the state of water in reconstituted milk protein dispersions by NMR and DSC. Lebensm. Wiss. Technol. 34:299-305.
  • Leloup, V.M., Colonna, P., and Ring, S.G. 1990. Studies on probe diffusion and accessibility in amylose gels, Macromolecules 23, 862-866.
  • Levine, H. and Slade, L., guest editors.1996. Recent Advances in Applications of Thermal Analysis to Foods, special issue of Journal of Thermal Analysis, 47(5):1175-1616.

  • Lewen, K.S., Paeschke, T., Reid, J., Molitor, P., and Schmidt, S.J. 2003. Analysis of the retrogradation of low starch concentration gels using DSC, rheology, and NMR spectroscopy. J. Agric. Food Chem. 51:2348-2358.
  • Li, S., Dickinson, C., and Chinachoti, P. 1996. Proton relaxation of starch and gluten by solid-state NMR spectroscopy. Cereal Chem. 73:736-743.
  • Li, S., Dickinson, L.C., and Chinachoti, P. 1997. Mobility of "unfreezable" and "freezable" water in waxy corn starch by 2H and 1H NMR. J. Agric. Food Chem. 46:62-71.
  • Lin, L.S., Yuen, H.K., and Varner, J.E. 1991. DSC of plant cell walls. Proc. Natl. Acad. Sci. USA 88: 2241-2243.
  • Lin, Y.S., Yeh, A.I., and Lii, C.Y. 2001. Correlation between starch retrogradation and water mobility as determined by DSC and NMR. Cereal Chem. 78:647-653.
  • Lioutas, T.S., Baianu, I.C. and Steinberg, M.P. 1986. O17 and Deuterium NMR Studies of Lysozyme Hydration. Arch. Biochem. Biophys. 247, 68-75.
  • Lioutas, T.S., Baianu, I.C., and Steinberg, M.P. 1987. Sorption equilibrium and hydration studies of lysozyme: water activity and 360-MHz proton NMR measurements, J. Agric. Food Chem., 35, 133-137,.
  • Liu, H. and LeLievre, J. 1991. A differential scanning calorimetry study of glass and melting transitions in starch suspensions and gels. Carbohydr. Res., 219, 23-32.
  • Liu, H. and Lelievre, J. 1991. Effects of heating rate and sample size on DSC traces of starch gelatinized at intermediate water levels. Starke 43: 225-27.
  • Liu, H., Lelievre, J., and Ayoung-Chee, W. 1991. A study of starch gelatinization using DSC, X-ray, and birefringence measurements. Carbohydr. Res. 210: 79-87.
  • Liu, H. and Lelievre, J. 1992. A DSC study of melting transitions in aqueous suspensions containing blends of wheat and rice starch. Carbohydr. Polym. 17:145-149.
  • Liu, H. and Lelievre, J. 1992. DSC and rheological study of the gelatinization of starch granules embedded in a gel matrix. Cereal Chem. 69, 597-599.
  • Liu, H. and Lelievre, J. 1993. A model of starch gelatinization linking DSC and birefringence measurements. Carbohydr. Polym. 20, 1-5.
  • Liu, J., Rigsbee, D.R., Stotz, C., and Pikal, M.J. 2002. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J. Pharm. Sci. 91:1853-1862.
  • Liu, J.X., Ramon, O., Mannheim, C.H., Daun, H., and Gilbert, S.G. 1993. Use of modified inverse chromatography to characterize the water exchange in real food systems. In Shelf Life Studies of Foods and Beverages (ed. G. Charalambous), pp. 1049-1070, Elsevier, Amsterdam.
  • Lourdin, D., Bizot, H., and Colonna, P. 1997. Correlation between static mechanical properties of starch-glycerol materials and low-temperature relaxation. Macromol. Symp. 114:179-185.
  • Lourdin, D., Ring, S.G., and Colonna, P. 1998. Study of plasticizer-oligomer and plasticizer-polymer interactions by dielectric analysis: maltose-glycerol and amylose-glycerol-water systems. Carbohydr. Res. 306:551-558.
  • Lu, S.X. and Cebe, P. 1996. Effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer 37:4857-4863.
  • Ludemann, H.-D. 1990 Dynamics of liquids and supercooled water studied by high pressure pulse NMR, Ber. Bunsenges. Phys. Chem. 94, 325-332.
  • Ludescher, R.D., Shah, N.K., McCaul, C.P., and Simon, K.V. 2001. Beyond Tg: optical luminescence measurements of molecular mobility in amorphous solid foods. Food Hydrocolloids 15:331-339.
  • MacKenzie, A.P. 1981. Modelling the Ultra-rapid Freezing of Cells and Tissues, in Microprobe Analysis of Biological Systems (eds T.E. Hutchinson & A.P. Somlyo), 397-421, New York, Academic Press
  • Maltini, E. 1977. Studies on the Physical Changes in Frozen Aqueous Solutions by DSC and Microscopic Observations, I.I.F.-I.I.R.-Karlsruhe, 1977-1, 1-9.
  • Mazzobre, M.F., Aguilera, J.M., and Buera, M.P. 2003. Microscopy and calorimetry as complementary techniques to analyze sugar crystallization from amorphous systems. Carbohydr. Res. 338:541-548.
  • McGhie, A.R. 1990. Thermal analysis techniques. Electrochem. Sci. Technol. Polym. 2: 201-232.
  • McPhillips, H., Craig, D.Q.M., Royall, P.G., and Hill, V.L. 1999. Characterization of the glass transition of HPMC using MTDSC. Int. J. Pharm. 180:83-90.
  • Meredith, P., Donald, A.M., and Payne, R.S. 1996. Freeze-drying: in situ observations using cryoenvironmental SEM and DSC. J. Pharm. Sci. 85:631-637.
  • Monteiro Marques, J.P., Le Loch, C., Wolff, E., and Rutledge, D.N.1991. Monitoring freeze-drying by low resolution pulse NMR: determination of sublimation endpoint. J. Food Sci. 56, 1707-1710.
  • Ozilgen, S. and Reid, D.S. 1993. The use of DSC to study the effects of solutes on heterogeneous ice nucleation kinetics in model food emulsions. Lebensm. Wiss. Technol. 26, 116-120.
  • Parducci, L.G. and Duckworth, R.B. 1972. DTA of frozen food systems II. J. Food Technol. 7, 423-430.
  • Pikal, M.J., Rigsbee, D.R., and Akers, M.J. 1995. Modulated DSC studies on proteins in the solid state: relaxation enthalpy, glass transitions and denaturation. Pharm. Res. 12:S139.
  • Riva, M. and Schiraldi, A. 1993. Kinetic parameterization of transitions and reactions in food systems from isothermal and non-isothermal DSC traces. Thermochim. Acta 220, 117-130.
  • Ruan, R.R., Long, Z., Song, A., and Chen, P.L. 1998. Determination of the Tg of food polymers using low-field NMR. Lebensm. Wiss. Technol. 31:516-521.
  • Ruan, R.R., Long, Z., Chang, K., Chen, P.L., and Taub, I.A. 1999. Tg mapping using MRI. Trans. ASAE 42:1055.
  • Ruan, R., Long, Z., Chen, P., Huang, V., Almaer, S., and Taub, I. 1999. Pulse NMR study of glass transition in maltodextrin. J. Food Sci. 64:6-9.
  • Ruan, R.R. and Chen, P.L. 2001. NMR techniques. In Bread Staling, eds. P. Chinachoti and Y. Vodovotz, CRC Press, Boca Raton, pp. 113-127.
  • Simatos, D., Faure, M., Bonjour, E. and Couach, M. 1975. DTA and DSC in the Study of Water in Foods. In Water Relations of Foods (ed R.B. Duckworth), New York, Academic Press, 193-209.
  • Zeleznak, K.J. & R.C. Hoseney 1986. Role of Water in Retrogradation of Wheat Starch Gels and Bread Crumb. Cereal Chem. 63, 407-11 (1986).