4: Definitions of Terms Relating to Crystalline Polymers (1988)

PREAMBLE

The recommendations embodied in this document are concerned with the terminology relating to the structure of crystalline polymers and the process of macromolecular crystallization. The document is limited to systems exhibiting crystallinity in the classical sense of three-dimensionally periodic regularity. The recommendations deal primarily with crystal structures that are comprised of essentially rectilinear, parallel-packed polymer chains, and secondarily, with those comprised of so-called globular macromolecules. Since the latter are biological in nature, they are not covered in detail here. In general, macromolecular systems with mesophases are also omitted, but crystalline polymers with conformational disorder are included.

After a listing of some general definitions relating to crystalline polymers (Section 1), the subject is divided into sections dealing, successively, with local structural arrangements at the scale of a few bond lengths (Section 2), morphological aspects (Section 3), molecular conformation within polymer crystals (Section 4) and, finally, kinetic aspects of crystallization (Section 5). An alphabetical index of terms is provided for the convenience of the reader.

This document relies on the basic definitions of terms in polymer science [1]. It is the second in a current series published by the Commission on Macromolecular Nomenclature dealing with definitions of physical and physicochemical terms in the polymer field (for the first, see Reference [2]).

1 GENERAL DEFINITIONS

<i>Term</i> 1.1 crystallinity	<i>Definition</i> The presence of three-dimensional order on the level of atomic dimensions.
	<i>Note</i> Crystallinity may be detected by diffraction techniques, heat-of fusion measurements, etc. Some amount of disorder within the crystalline region is not incompatible with this concept.
1.2 crystalline polymer	A polymer showing crystallinity.

Prepared by a working group consisting of G. Allegra (Italy), P. Corradini (Italy), H.-G. Elias (USA), P.H. Geil (USA), H.D. Keith (USA) and B. Wunderlich (USA). Reprinted from *Pure Appl. Chem.* **61**, 769-785 (1989).

74

Term	 Definition Notes 1. One- or two-dimensional order leads to mesophase structure. 2. The range of order may be as small as about 2 nn in one (or more) crystallographic direction(s) and is usually below 50 nm in at least one direction. 	
1.3 degree of crystallinity	recommended symbols: w_c for mass fraction; \mathbf{f}_c for volume fraction. The fractional amount of crystallinity in the polymer sample.	
	 Notes 1. The assumption is made that the sample can be subdivided into a crystalline phase and an amorphous phase (the so-called two-phase model). 2. Both phases are assumed to have properties identical with those of their ideal states, with no influence of interfaces. 3. The degree of crystallinity may be expressed either as the mass fraction or as the volume fraction, the two quantities being related by 	
	$w_{\rm c} = \boldsymbol{f}_c \boldsymbol{r}_c / \boldsymbol{r} \tag{1}$	
	where \mathbf{r} and \mathbf{r}_c are the densities of the entire sample and of the crystalline fraction, respectively. 4. The degree of crystallinity can be determined by several experimental techniques; among the most commonly used are: (i) x-ray diffraction, (ii) calorimetry, (iii) density measurements, and (iv) infra-red spectroscopy (IR). Imperfections in crystals are not easily distinguished from the amorphous phase. Also, the various techniques may be affected to different extents by imperfections and interfacial effects. Hence, some disagreement among the results of quantitative measurements of crystallinity by different methods is frequently encountered. 5. The following expressions for $w_{c,a}$, are recommended, where the subscript a specifies the particular experimental method used. (<i>i</i>) By x-ray diffraction: the degree of crystallinity, $w_{c,x}$, is given by	
	$w_{c,x} = I_c/(I_c + K_x I_a)$ where I_c and I_a are the integrated intensities scattered over a suitable angular interval by the crystalline and the amorphous phases, respectively, and K_x is a calibration constant. If the sample is anisotropic, a suitable average of the diffracted intensity in reciprocal space must be obtained. (<i>ii</i>) By calorimetry: the degree of crystallinity, $w_{c,h}$ is given by	(2)
	$w_{c,h} = \Delta h_{fus} / \Delta h_{fus,c}$ where h_{fus} is the specific enthalpy of fusion of the sample and h_{fu} is the specific enthalpy of fusion of the completely crystalline polymer over the same temperature range. The value of $h_{fus,c}$, may be obtained by extrapolating h_{fus} to the density	(3) IS,C

DEFINITIONS

Term	Definition of the completely crystalline polymer, which in turn may be obtained from x-ray diffraction data. The specific enthalpies of fusion are temperature-dependent. (<i>iii</i>) By density measurements: the degree of crystallinity, $w_{c,d}$, is given by	
	$w_{\rm c,d} = \frac{\rho_{\rm c}}{\rho} \cdot \frac{\rho - \rho_{\rm a}}{\rho_{\rm c} - \rho_{\rm a}} \tag{6}$	(4)
	where ρ , ρ_c and ρ_a are the densities of the sample, of the completely crystalline polymer and of the completely amorphou polymer, respectively. (<i>iv</i>) By infra-red spectroscopy: the degree of crystallinity, $w_{c,i}$, is given by	us
	$w_{c,i} = \frac{1}{a_c \rho l} \log_{10}(I_0/I)$	(5)
	where I_0 and I are, respectively, the incident and the transmitter intensities at the frequency of the absorption band due to the crystalline portion, a_c is the absorptivity of the crystalline materia and l is the thickness of the sample.	
1.4 (polymer) crystal	A crystalline domain usually limited by well-defined boundaries.	
	 Notes 1. Polymer crystals frequently do not display the perfection that is usual for low-molar-mass substances. 2. Twinned polymer crystals are, sometimes, erroneously referred to as 'crystals'. 3. Polymer crystals that can be manipulated individually are often called (polymer) single crystals. A single crystal may contain different fold domains. 	
1.5 (polymer) crystallite	A small crystalline domain.	
	<i>Notes</i> 1. A crystallite may have irregular boundaries and parts of its constituent macromolecules may extend beyond its boundaries. 2. This definition is not identical with that used in classical crystallography.	
1.6 unit cell	The smallest, regularly repeating material portion contained in a parallelepiped from which a crystal is formed by parallel displacement in three dimensions [3].	nts
	<i>Notes</i> 1. Unlike in the case of low-molar-mass substances, the unit cell of polymer crystals usually comprises only parts of the polymer	
76		

Term	 <i>Definition</i> molecules and the regularity of the periodic repetition may be imperfect. 2. In the case of parallel-chain crystals, the chain axis is usually denoted by <i>c</i> or, sometimes, <i>b</i>. 3. This definition applies to the so-called primitive unit cell. In practice, the effective unit cell may consist of more than one primitive unit cell.
1.7 molecular	The conformation of the macromolecule as a whole.
conformation	
	Notes
	1. In the polymer literature, molecular conformation is sometimes
	referred to as macroconformation.
	2. In molecular conformations involving parallel stems, the latter
	may be confined to the same crystal or may also extend over several crystals.
1.8 local conformation	The conformation of a macromolecule at the scale of the constitutional units.
	Note
	In the polymer literature, local conformation is sometimes referred
	to as microconformation.
2 TERMINOLOGY RELATIN ASPECTS [4]	G TO LOCAL CONFORMATION AND STRUCTURAL
Term	Definition
2.1 chain axis	The straight line parallel to the direction of chain extension

10/11	Definition
2.1 chain axis	The straight line parallel to the direction of chain extension, connecting the centres of mass of successive blocks of chain units, each of which is contained within an identity period (see Fig. 4.1).
2.2 (chain) identity period, or (chain) repeating distance	The shortest distance along the chain axis for translational repetition of the chain structure.
	<i>Notes</i> 1. The chain identity period is usually denoted by c. 2, An example is given by Fig. 4.1.
2.3 (chain) conformation repeating unit	The smallest structural unit of a polymer chain with a given conformation that is repeated along that chain through symmetry operations [5].
2.4 geometrical equivalence	The symmetry correspondence among units belonging to the same chain.

DEFINITIONS

Terms	Definition	
	Note	
	The symmetry elements always bear a special relationship to the	
	chain axis (see also the note, Definition 2.9).	
2.5 equivalence	The working hypothesis that the chain monomeric units are	
postulate	geometrically equivalent [6].	
2.6 helix	The molecular conformation of a spiral nature, generated by	
	regularly repeating rotations around the backbone bonds of a	

Note

macromolecule.

An example is shown in Fig. 4.1.

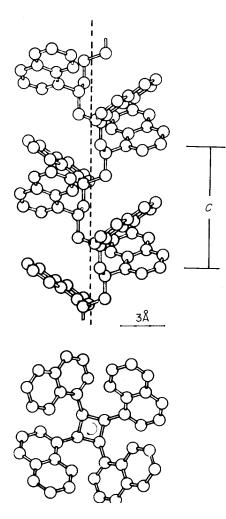


Fig. 4.1 Side view (above) and end view (below) of the macromolecule of isotactic poly(l-vinylnaphthalene) in the crystalline state. The helix symbol is s(2*4/1). The chain axis is shown by the dashed line, and c is the

chain identity period. Hydrogen atoms are omitted. [From P. Corradini and P. Ganis. *Nuovo Cimento*, *Suppl.* **15**, 96 (1960)].

<i>Term</i> 2.7 helix residue	<i>Definition</i> units that The smallest set of one or more successive configurational base generates the whole chain through helical symmetry.			
2.8 class of helix	The number of skeletal chain atoms contained within the helix residue.			
2.9 line repetition groups	The possible symmetries of arrays extending in one direction with a fixed repeating distance [3, 5, 7].			
	<i>Note</i> Linear polymer chains in the crystalline state must belong to one of the line repetition groups (see Table 4.1 for some examples). Permitted symmetry elements are: the identity operation (symbol 1); the translation along the chain axis (symbol <i>t</i>); the mirror plane orthogonal to the chain axis (symbol <i>m</i>) and that containing the chain axis (symbol <i>d</i>); the glide plane containing the chain axis (symbol <i>c</i>); the inversion centre, placed on the chain axis (symbol 2); the helical, or screw, symmetry where the axis of the helix coincides with the chain axis. In the latter case, the symbol is $s(A*M/N)$, where s stands for the screw axis, <i>A</i> is the class of the helix, * and / are separators, and <i>M</i> is the integral number of residues contained in <i>N</i> turns, corresponding to the identity period (<i>M</i> and <i>N</i> must be prime to each other) [8, 9] (see Fig. 4.1). The class index <i>A</i> may be dropped if deemed unnecessary, so that the helix may also be simply denoted as $s(M/N)$ [5, 7].			

Table 4.1 Chain symmetry of some crystalline polymers Line repetition

group [a]	Polymer
<i>t</i> 1	trans- 1,4-polyisoprene
s(A*M/N)	isotactic polypropene (M/N=3/1, A=2)
s(A*M/N)2	<i>syndiotactic</i> polypropene ($M/N=2/l, A=4$, helical modification)
t <i>m</i>	poly(heptamethylene pimelamide)
tc	poly(1,1-difluoroethylene) (modification 2)
ti	diisotactic poly[ethylene-alt-(cis-2-butene)]
s(5*2/1)m	poly(cyclopentene)
s(14*2/1)d	poly(hexamethylene adipamide)
t <i>cm</i>	syndiotactic 1,2-poly(1,3-butadiene)
s(1*2/1)dm	polyethylene

2.10 structural disorder Any deviation from the ideal three-dimensional regularity of the polymer crystal structure.

79

Term

Definition
Note
Examples of structural disorder in crystalline polymers are given
in Table 4.2.

Table 4.2 Examples o	f structural o	disorder occurring	in cry	vstalline polymers

Type of structural disorde	er	Examples	
(i) lattice distortion		as in usual crystallization (i.e. mechanical strain, lattice	
		dislocation, impurities, etc)	
(ii) chain orientation disorder		isotactic polypropene [12], isotactic polystyrene [13],	
(iii) configurational disor	der	poly(vinylidene fluoride)-form II [14] atactic polymers capable of crystallization: poly(vinyl	
(iii) configurational disor	uci	alcohol) [15], poly(vinyl fluoride) [16] (see Fig. 4.2)	
(iv) conformational disor	der	high-temperature polymorph of <i>trans</i> -1,4-polybutadiene	
		[17] (Fig. 4.3); cis-1,4-polyisoprene [17] (Fig. 4.4)	
(v) macromolecular isom	orphism		
[9,18]		noly(agataldahyda ag propionaldahyda) [10]	
copolymer isomorphism		poly(acetaldehyde-co-propionaldehyde) [19] isotactic poly [(1-butene)- <i>co</i> -(3-methyl-l-butene)] [20]	
		isotactic poly[(1 outene) to (5 metrif) 1 outene)][25]	
homopolymer isomorphis	sm	mixtures of isotactic poly(4-methyl-l-pentene) and	
		isotactic poly(4-methyl-l-hexene) [22]	
2.10.1 lattice distortion	Structural	disorder resulting from misalignment of the unit	
	cells withi	n the crystals.	
2.10.2 chain-orientational	Structural	disorder resulting from the statistical coexistence within	
disorder	the crystal	s of identical chains with opposite orientations.	
	Note		
	A typical	example is provided by the up-down statistical coexistence	
	• •	ed chains in the same crystal structure.	
2.10.3 configurational	Structural	disorder resulting from the statistical co-crystallization	
disorder	of different configurational repeating units (see Fig. 4.2).		
2.10.4 conformational	Structural disorder resulting from the statistical co-existence		
disorder	within the crystals of identical configurational units with different		
		ions (see Figs 4.3 and 4.4).	
2.10.5 macromolecular			
		co-crystallization of different constitutional	
somorphism	repeating units, which may either belong to the same copolymer		
	chains (co	polymer isomorphism) or originate from different	
	homopoly	mer chains (homopqlymer isomorphism).	
	Note		
	Isomorphi	sm is a general term: in the strict sense, the crystal	

80

structure is essentially the same throughout the range of

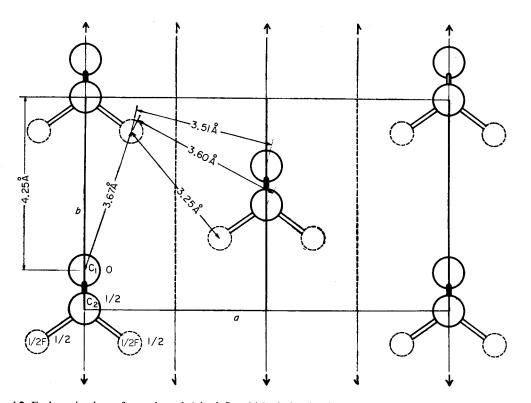


Fig. 4.2 End projection of atactic poly(vinyl fluoride) chains in the crystalline state. Broken circles show fluorine atoms with 50% probability [16].



Fig. 4.3 Chain conformation of the disordered (above) and ordered (below) polymorphs of trans-1,4 polybutadiene in the crystalline state. The heavy black lines designate the double bonds and the symbols S+, S- and C the conformation [17].

Term

Definition

compositions; in isodimorphism or isopolymorphism, there are two or more crystal structures, respectively, depending on composition.

3 TERMINOLOGY RELATING TO MORPHOLOGICAL ASPECTS [9, 10]

TermDefinition3.1 lamellar crystalA type of crystal with a large extension in two dimensions and a uniform
thickness.

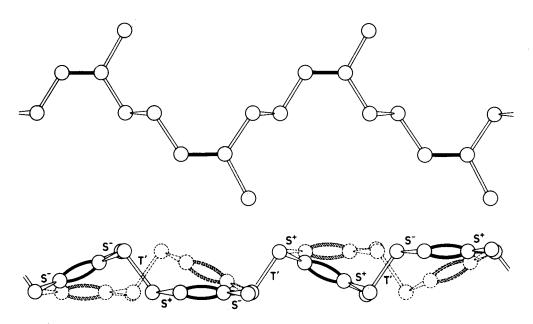


Fig. 4.4 Different possible conformations of cis-1,4-polyisoprene in the crystalline state, as viewed sideways along two orthogonal axes [17].

Term	Definition Note A lamellar crystal is usually of a thickness in the 5-50 nm range, and it may be found individually or in aggregates. The parallel- chain stems intersect the lamellar plane at an angle between 45° and 90°. The lamellae often have pyramidal shape owing to differences in the fold domains; as a result, one can deduce different fold planes and fold surfaces from the lamellar morphology.	
3.2 lath crystal	A lamellar crystal prevailingly extended along one lateral dimension.	
3.3 multilayer aggregate	A stack of lamellar crystals generated by spiral growth at one or more screw dislocations.	
	<i>Note</i> The axial displacement over a full turn of the screw (Burgers vector) is usually equal to one lamellar thickness.	
3.4 long spacing	The average separation between stacked lamellar crystals.	
	<i>Note</i> The long spacing is usually measured by small-angle x-ray or neutron diffraction.	
3.5 axialite	A multilayer aggregate, consisting of lamellar crystals splaying out from a common edge.	

82

<i>Term</i> 3.6 dendrite	<i>Definition</i> A crystalline morphology produced by skeletal growth, leading to a 'tree-like' appearance.	
3.7 fibrous crystal	A type of crystal significantly longer in one dimension than in either of the other two.	
	Note	
	Fibrous crystals may comprise essentially extended chains parallel	
	to the fibre axis; however, macroscopic polymer fibres containing	
	chain-folded crystals are also known.	
3.8 shish-kebab structure	A polycrystalline morphology of double habit consisting of fibrous crystals overgrown epitaxially by lamellar crystals, the stems of which are parallel to the fibre axis.	
3.9 spherulite	A polyerystalline, roughly spherical morphology consisting of	
L L	lath, fibrous or lamellar crystals emanating from a common	
	centre.	
	Note	
	Space filling is achieved by branching, bending or both, of the	
	constituent fibres or lamellae.	

4 TERMINOLOGY RELATING TO MOLECULAR CONFORMATION WITHIN POLYMER CRYSTALS [9, 10]

<i>Term</i> 4.1 tie molecule	<i>Definition</i> A molecule that connects at least two different crystals.		
4.2 stem	A crystallized, rodlike portion of a polymer chain connected to non-rodlike portions, or chain ends, or both.		
4.3 chain folding	The conformational feature in which a loop connects two parallel stems belonging to the same crystal.		
4.4 fold	The loop connecting two different stems in a folded chain.		
4.5 fold plane	A crystallographic plane defined by a large number of stems that are connected by chain folds.		
4.6 fold surface	A surface approximately tangential to the folds.		
4.7 fold domain	A portion of a polymer crystal wherein the fold planes have the same orientation.		
	<i>Note</i> The sectors of lamellar crystals frequently represent fold domains.		

<i>Term</i> 4.8	adjacent re-entry	<i>Definition</i> A model of crystallinity in which chain folds regularly connect			
4.0	model	adjacent stems.			
4.9	switchboard model	A model of crystallinity in which the crystallized segments of a macromolecule belong to the same crystal, although the stems are connected randomly.			
4.10	fringed-micelle model	A model of crystallinity in which the crystallized segments of a macromolecule belong predominantly to different crystals.			
4.11	folded-chain crystal	A polymer crystal consisting predominantly of chains that traverse the crystal repeatedly by folding as they emerge at its external surfaces.			
		<i>Note</i> The re-entry of the chain into the crystal is assumed to be adjacent or near-adjacent within the lattice.			
4.12	parallel-chain crystal	A type of crystal resulting from parallel packing of stems, irrespective of the stems' directional sense.			
4.13	extended-chain crystal	A polymer crystal in which the chains are in an essentially fully extended conformation.			
4.14	globular-chain crystal	A type of crystal comprised of macromolecules having globular conformations.			
		<i>Note</i> Globular-chain crystals usually occur with globular proteins.			
5]	TERMINOLOGY RELATIN	G TO CRYSTALLIZATION KINETICS [10, 11]			
<i>Term</i> 5.1 nucleation		<i>Definition</i> Formation of the smallest crystalline entity, the further growth of which is thermodynamically favoured.			
		<i>Note</i> Nucleation may be classified as primary or secondary. Primary nucleation can be homogeneous or heterogeneous; if heterogeneous nucleation is initiated by entities having the same composition as the crystallizing polymer, it is called self-nu cleation. Secondary nucleation is also known as surface nucleation.			
5.2	molecular nucleation	Initial crystallization of a small portion of a macromolecule, after which further crystallization is thermodynamically favoured.			
84		,			

Term	<i>Definition</i> <i>Note</i> Molecular nucleation may give rise to a new crystal or increase the size of a pre-existing one.			
5.3 Avrami equation	An equation describing crystallization kinetics.			
	<i>Notes</i> 1. The Avrami equation has the form			
	$1 - \phi_{\rm c} = \exp(-Kt^n) \tag{6}$			
	where \mathbf{f}_c is the crystalline volume fraction developed at time <i>t</i> and constant temperature, and <i>K</i> and <i>n</i> are suitable parameters. 2. <i>K</i> in equation (6) is temperature-dependent. 3. According to the original theory, <i>n</i> in equation (6) should be an integer from 1 to 4, the value of which should depend only on the type of the statistical model; however, it has become customary to regard it as an adjustable parameter that may be non-integral.			
5.4 primary crystallization	The first stage of crystallization, considered to be ended when most of the spherulite surfaces impinge on each other.			
	<i>Note</i> In isothermal crystallization, primary crystallization is often described by the Avrami equation.			
5.5 secondary crystallization	Crystallization occurring after primary crystallization, usually proceeding at a lower rate.			
5.6 reorganization	The molecular process by which (i) amorphous or poorly ordered regions of a polymer specimen become incorporated into crystals, or (ii) a change to a more stable crystal structure takes place, or (iii) defects within the crystals decrease.			
	 Notes 1. Secondary crystallization may be involved in the reorganization process. 2. Reorganization may result from annealing. 3. (i) and (iii) may also be called crystal perfection. 			
5.7 recrystallization	Reorganization proceeding through partial melting.			
	<i>Note</i> Recrystallization is likely to result in an increase in the degree of crystallinity, or crystal perfection, or both.			
5.8 segregation	The rejection of a fraction of macromolecules, or of impurities, or both, from growing crystals.			

Note

The rejected macromolecules are usually those of insufficient relative molecular mass, or differing in constitution or configuration (e.g. branching, tacticity, etc).

REFERENCES

- 1 IUPAC. Basic definitions of terms relating to polymers 1974. *Pure Appl. Chem.* **40**, 477-491 (1974). Reprinted as Chapter 1, this volume.
- 2 IUPAC. Definitions of terms relating to individual macromolecules, their assemblies, and dilute polymer solutions (recommendations 1988). *Pure Appl. Chem.* **61**, 211-241 (1989). Reprinted as Chapter 3, this volume.
- 3 The International Union of Crystallography. *International Tables for X-ray Crystallography*. Kynoch Press, Birmingham, UK, Vol. I (1969).
- 4 H. Tadokoro. Structure of Crystalline Polymers. Wiley-Interscience, New York (1979).
- 5 IUPAC. Stereochemical definitions and notations relating to polymers (recommendations 1980). *Pure Appl. Chem.* **53**, 733-752 (1981). Reprinted as Chapter 2, this volume.
- 6a C.W. Bunn. The stereochemistry of chain polymers. Proc. R. Soc. London, A 180, 67 (1942).
- 6b M.L. Huggins. Comparison of the structures of stretched linear polymers. J. Chem. Phys. 13, 37 (1945).
- 6c L. Pauling, R.B. Corey and H.R. Branson. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. *Proc. Nad. Acad. Sci. USA* 37, 205 (1951).
- 6d G. Natta and P. Corradini. Structure of crystalline polyhydrocarbons. *Nuovo Cimento*, Suppl. **15**, 9 (1960).
- 7 P. Corradini. Chain conformation and crystallinity. In *Stereochemistry of Macromolecules* (Ed. A. Ketley). Marcel Dekker, New York, Vol. **III**, 1-60 (1968).
- 8 R.L. Miller. Crystallographic data for various polymers. In *Polymer Handbook*, 2nd Edn (Eds. J. Brandrup and E.H. Immergut). Wiley-Interscience, New York, **III**-1 (1975).
- 9 B. Wunderlich. Macromolecular Physics. Academic Press, New York. Vol. 1 (1973).
- 10 P.H. Geil. Polymer Single Crystals. Interscience, New York (1963).
- 11 B. Wunderlich. Macromolecular Physics. Academic Press, New York, Vol. 2 (1976).
- 12 G. Natta and P. Corradini. Structure and properties of isotactic polypropylene. *Nuovo Cimento*, *Suppl.* **15**, 40 (1960).
- 13 G. Natta, P. Corradini and I.W. Bassi. Crystal structure of isotactic polystyrene. *Nuovo Cimento*, *Suppl.* **15**, 68 (1960).
- 14 Y. Takahashi and H. Tadokoro. Short-range order in form II of poly(vinylidene fluoride): antiphase domain structures. *Macromolecules* **16**, 1880 (1983).
- 15 C.W. Bunn and H.S. Peiser. Mixed crystal formation in high polymers. *Nature* 159, 161 (1947).
- 16 G. Natta, I.W. Bassi and G. Allegra. Struttura crystallina del polivinilfloruro atattico. *Atti Accad. Naz. Lincei Rend., Cl. Sci. Fis., Mat. Nat.* **31**, 350 (1961).
- 17 P. Corradini. Observation of different conformations of a macromolecule in the crystalline state. J. Polym. Sci., Polym. Symp. Ed. **51**, 1 (1975).
- 18 G. Allegra and 1.W Bassi. Isomorphism in synthetic macromolecular systems. *Adv. Polym. Sci.* 6, 549 (1969).
- 19 A. Tanaka, Y. Hozumi, K. Hatada, S. Endo and R. Fujishige. Isomorphism phenomena in polyaldehydes. J. Polym. Sci., Polym. Lett. Ed. 2, 181 (1964).
- 20 A. Turner Jones. Crystalline phases in copolymers of butene and 3-methylbutene. J. Polym. Sci., Polym. Lett. Ed. 3, 591 (1965).
- 21 G. Natta. P. Corradini, D. Sianesi and D. Morero. Isomorphism phenomena in macromolecules. J. *Polym. Sci.* **51**, 527 (1961).
- 22 G. Natta, G. Allegra, I.W Bassi, C. Carlini, E. Chiellini and G. Montagnoli. Isomorphism phenomena in isotactic poly(4-methyl-substituted á-olefins) and in isotactic poly(alkyl vinyl ethers). *Macromolecules* **2**, 311 (1969).

ALPHABETICAL INDEX OF TERMS

Tomm	Definition number	Tour	Definition number
Term	<i>Definition number</i> 4.8	helix residue	<i>Definition number</i> 2.7
adjacent re-entry model aggregate, multilayer	4.8 3.3	heterogeneous nucleation	5.1
amorphous phase	1.3	homogeneous nucleation	5.1
Avrami equation	5.3	homopolymer isomorphism	2.10.5
axialite	3.5	identity period	2.10.5
Burgers vector	3.3	infra-red spectroscopy	2.2 13(iv)
calorimetry	1.3(ii)	isodimorphism	2.10.5
chain axis	2.1,1.6	isomorphism	2.10.5
chain folding	4.3	isopolymorphism	2.10.5
chain-orientational disorder	2.10.2	isothermal crystallization	5.4
class of helix	2.8	lamellar crystal	3.1
configurational disorder	2.10.3	lath crystal	3.2
conformational disorder	2.10.3	lattice distortion	2.10.1
conformational repeating uni		line repetition groups	2.9
conformation, local	1.8	local conformation	1.8
conformation, molecular	1.7,4	long spacing	3.4
copolymer isomorphism	2.10.5	macroconformation	1.7
crystal	1.4	macromolecular isomorphism	2.10.5
crystalline phase	1.3	microconformation	1.8
crystalline polymer	1.2	molecular conformation	1.7,4
crystallinity	1.1	molecular nucleation	5.2
crystallite	1.5	morphology	3
crystallization	5	multilayer aggregate	3.3
isothermal	5.4	nucleation	5.1
kinetics	5	parallel-chain crystal	4.12
primary	5.4	primary crystallization	5.4
secondary	5.5	primary nucleation	5.1
crystal perfection	1.4, 1.6, 5.6, 5.7	primitive unit cell	1.6
degree of crystallinity	1.3	pyramidal shape	3.1
dendrite	3.6	recrystallization	5.7
density measurements	1.3(iii)	reorganization	5.6
disorder	2.10	repeating distance	2.2
chain-orientational	2.10.2	secondary crystallization	5.5
configurational	2.10.3	secondary nucleation	5.1
conformational	2.10.4	segregation	5.8
structural	2.10	self-nucleation	5.1
effective unit cell	1.6	shish-kebab structure	3.8
equivalence postulate	2.5	single crystal	1.4
extended-chain crystal	4.13	spacing, long	3.4
fibrous crystal	3.7	spherulite	3.9
fold	4.4	stem	4.2
domain	4.7	structural disorder	2.10
plane	4.5	surface nucleation	5.1
surface	4.6	switchboard model	4.9
folded chain	4.3	symmetry elements	2.9
folded-chain crystal	4.11	tie molecule	4.1
fringed-micelle model	4.10	twinned crystals	1.4
geometrical equivalence	2.4	two-phase model	1.3
globular-chain crystal	4.14	unit cell	1.6
helix	2.6	x-ray diffraction	1.3(i)
helix class	2.8		

Nomenclature