8.5.2 Amperometric and related techniques (Techniques Involving Electrode Reactions and Employing Constant Excitation Signals) | Recommended
Name of
Technique | Excitation
Signal
(Constant) | Independent
Variable | System | Measured
Response | Typical
Response
Curve | Remarks | |-------------------------------------|------------------------------------|--|--|-------------------------------------|------------------------------|---| | Amperometry | Applied E.M.F. or potential E | Concentration c,
time t, or any
other
independent
variable | One working
electrode and
one reference
electrode in
stirred or
moving solution | Current, $i(I) = f(c)$ | | A measure of the cell current when the potential difference between indicator and reference electrodes is controlled. Terms like "stirred-mercury-pool amperometry" and "rotating-platinum-wire-electrode amperometry" are recommended to denote the indicator electrode employed. | | Amperometric titration | As for amperometry | Volume V
(or otherwise
measured
amount) of added
reagent | As for amperometry | Current, $i(I) = f(V)$ | | The term "amperometric titration with a dropping mercury electrode" is recommended in preference to "polarometric titration" or "polarographic titration". | | Chrono-
amperometry | | Time t | Stationary
working
electrode and a
reference
electrode in
unstirred
solution | Current, $i(I) = f(t)$ | 3 | A measure of the time dependence of cell current when the potential difference between indicator and reference electrodes is controlled. Usually performed with a stationary indicator electrode in unstirred solution, current-time curves reflect mass transfer and dynamics of the chemical processes. | | Chrono-
coulometry | | | As for amperometry | Quantity of electricity, $Q = f(t)$ | Q t 4 | A measure of the time dependence of the quantity of electricity (integrated current) as a function of time under chrono-amperometric conditions . | ## 8.5.2 Amperometric and related techniques (Techniques Involving Electrode Reactions and Employing Constant Excitation Signals) (Continued) | Recommended
Name of
Technique | Excitation Signal (Constant) | Independent
Variable | System | Measured
Response | Typical
Response
Curve | Remarks | |--|------------------------------|-------------------------|---|--|------------------------------|--| | Electro-
gravimetry | Applied E or current $i(I)$ | | Specially designed electrode pairs; one acting as cathode, while the other as anode | Mass m of material deposited on the working electrode | | A measure of the mass of material deposited on an electrode, usually with convective mass transfer under conditions where quantitative recovery of the material is obtained. The terms "internal electrogravimetry" and "spontaneous electrogravimetry" are recommended to denote spontaneous deposition. | | Electrography | | | | Identification on determination of material stripped off | | Cathodic or anodic stripping from a solid electrode
sample material into an electrolyte in a porous medium;
mainly used for qualitative analysis of metals without
deconposition. | | Controlled potential coulometry | Potential E | Time t | Working electrode,
reference electrode
and auxiliary
electrode immersed in
stirred solution | Quantity of electricity $Q = \int idt$ | | A measure of the total quantity of electricity required to electrolyze a specific electroactive species in solution, selected by controlling the potential of the working electrode. Usually conducted with convective mass transfer. The term "controlled-potential coulometric titration" is inappropriate and is not recommended. | | Controlled potential electrogravimetry | | | As for controlled potential coulometry | Mass m of material deposited on the working electrode | | |