1.4.4 SI derived units for other quantities

This table gives examples of other SI derived units; the list is merely illustrative.

Physical quantity	Expression in terms of SI base units	
area	m^2	
volume	m^3	
speed, velocity	$m s^{-1}$	
angular velocity	s^{-1} , rad s^{-1}	
acceleration	$m s^{-2}$	
moment of force	N m	$= m^2 kg s^{-2}$
wavenumber	m^{-1}	
density, mass density	kg m ⁻³	
specific volume	$m^3 kg^{-1}$	
amount concentration ¹	mol m ⁻³	
molar volume	$m^3 mol^{-1}$	
heat capacity, entropy	J K ⁻¹	$= m^2 kg s^{-2} K^{-1}$
molar heat capacity,	J K ⁻¹ mol ⁻¹	$= m^2 kg s^{-2} K^{-1} mol^{-1}$
molar entropy		
specific heat capacity,	$J K^{-1} kg^{-1}$	$= m^2 s^{-2} K^{-1}$
specific entropy		
molar energy	J mol ⁻¹	$= m^2 kg s^{-2} mol^{-1}$
specific energy	J kg ⁻¹	$= m^2 s^{-2}$
energy density	J m ⁻³	$= m^{-1} kg s^{-2}$
surface tension	$N m^{-1} = J m^{-2}$	$= kg s^{-2}$
heat flux density, irradiance	$W m^{-2}$	$= kg s^{-3}$
thermal conductivity	$W m^{-1} K^{-1}$	$= m kg s^{-3} K^{-1}$

⁽¹⁾ The words 'amount concentration' are an abbreviation for 'amount-of-substance concentration'. When there is not likely to be any ambiguity this quantity may be called simply 'concentration'.

Physical	<i>quantity</i>
1 nvsicui	guaniiiv

Expression in terms of SI base units

kinematic viscosity,	$m^2 s^{-1}$	
diffusion coefficient		
dynamic viscosity	$N s m^{-2} = Pa s$	$= m^{-1} kg s^{-1}$
electric charge density	$C m^{-3}$	$= \mathrm{m}^{-3} \mathrm{s} \mathrm{A}$
electric current density	$A m^{-2}$	
conductivity	S m ⁻¹	$= m^{-3} kg^{-1} s^3 A^2$
molar conductivity	$S m^2 mol^{-1}$	$= kg^{-1} mol^{-1} s^3 A^2$
permittivity	F m ⁻¹	$= m^{-3} kg^{-1} s^4 A^2$
permeability	H m ⁻¹	$= m kg s^{-2} A^{-2}$
electric field strength	$V m^{-1}$	$= m kg s^{-3} A^{-1}$
magnetic field strength	$A m^{-1}$	
luminance	cd m ⁻²	
exposure (X and γ rays)	C kg ⁻¹	$= kg^{-1} s A$
absorbed dose rate	Gy s ⁻¹	$= m^2 s^{-3}$