1.3.9 Chemical kinetics

Name	Symbol	Definition	SI unit	Notes
rate of change of quantity X	\dot{X}	$\dot{X} = dX/dt$	(varies)	(1)
rate of conversion	ξ	$\dot{\xi} = \mathrm{d}\xi/\mathrm{d}t$	mol s ⁻¹	(2)
rate of concentration change	$r_{\rm B}, v_{\rm B}$	$r_{\rm B} = {\rm d}c_{\rm B}/{\rm d}t$	$mol m^{-3} s^{-1}$	(3),(4)
(due to chemical reaction)				
rate of reaction (based on	v	$v = \dot{\xi} / V$	$mol m^{-3} s^{-1}$	(2), (4)
amount of concentration)		$= v_{\rm B}^{-1} \mathrm{d} c_{\rm B} / \mathrm{d} t$		
partial order of reaction	$n_{\rm B}, m_{\rm B}$	$v = k \prod c_{\mathrm{B}}^{n_{\mathrm{B}}}$	1	(5)
overall order of reaction	n, m	$n = \sum n_{\rm B}$	1	

⁽¹⁾ E.g. rate of change of pressure $\dot{p} = dp/dt$, for which the SI unit is Pa s⁻¹.

⁽²⁾ The reaction must be specified for which this quantity applies.

⁽³⁾ The symbol and the definition apply to entities B.

⁽⁴⁾ Note that r_B an v can also be defined on the basis of partial pressure, number concentration, surface concentration etc., with analogous definitions. If necessary diefferently defined rates of reaction can be distinguished by a subscript, e.g. $v_p = v_B^{-1} dp_B/dt$, etc. Note that the rate of reaction can only be defined for a reaction of known and time-independent stoichiometry, in terms of a specified reaction equation; also the second equation for the rate of reaction follows from the first only if the volume V is constant. The derivatives must be those due to the chemical reaction considered; in open systems, such as flow systems, effects due to input and output processes must also be taken into account.

⁽⁵⁾ The symbol applies to reactant B. The symbol *m* may be used when confusion with *n* for amount of substance occurs.

Name	Symbol	Definition	SI unit	Notes
rate constant,	k	$v = k \prod c_{\mathrm{B}}^{n_{\mathrm{B}}}$	$(m^3 mol^{-1})^{n-1} s^{-1}$	(6)
Boltzmann constant	k, k _B		J K ⁻¹	
half life	$t_{1/2}$	$c(t_{\frac{1}{2}})=c(0)/2$	S	
relaxation time	τ		S	(7)
(Arrhenius) acativation	$E_{\rm a}, E_{\rm A}$	$E_{\rm a} = RT^2 {\rm d} \ln k/{\rm d}T$	J mol ⁻¹	(8)
energy pre-exponential factor, frequency factor	A	$k = A \exp(-E_a/RT)$	$(m^3 \text{ mol}^{-1})^{n-1} \text{ s}^{-1}$	
volume of activation	$\Delta^{\ddagger}V, \Delta V^{\ddagger}$	$\Delta^{\ddagger}V = -RT(\partial \ln k/\partial T)$	$m^3 mol^{-1}$	

Rate constants k and pre-exponential factors A are usually quoted in either $(dm^3 mol^{-1})^{n-1}$ s⁻¹ or on a molecular scale in $(cm^3)^{n-1}$ s⁻¹ or $(cm^3 molecule^{-1})^{n-1}$ s⁻¹. Note that 'molecule' is not a unit, but is often included for clarity. Rate constants are frequently quoted as decadic logarithms.

Example	For a second order reaction	
-	$k = 10^{8.2} \text{dm}^3 \text{mol}^{-1} \text{s}^{-1} \text{or}$	$\lg(k/dm^3 \text{ mol}^{-1} \text{ s}^{-1}) = 8.2$
	or alternatively	
	$k = 10^{-12.6} \text{ cm}^3 \text{ s}^{-1}$	or $\lg(k/\text{cm}^3 \text{ s}^{-1}) = -12.6$

- (7) τ is defined as the time in which a concentration perturbation falls to 1/e of its initial value.
- (8) Note that the term Arrhenius activation energy is to be used only for the empirical quantity defined in the table. Other empirical equations with different 'activation energies', such as $k(T) = A'T^n \exp(-E_a'/RT)$, are also being used.

Name	Symbol	SI unit	Notes
standard enthalpy of activation	$\Delta^{\ddagger}H^{\circ}, \Delta H^{\ddagger}$	J mol ⁻¹	(9)
standard internal energy of activation	$\Delta^{\ddagger}U^{\circ}\!,\Delta U^{\ddagger}$	J mol ⁻¹	(9)
standard entropy of activation	$\Delta^{\ddagger}S^{\circ}$, ΔS^{\ddagger}	J mol ⁻¹ K ⁻¹	(9)
standard Gibbs energy of activation	$\Delta^{\ddagger}G^{\circ}\!,\Delta G^{\ddagger}$	J mol ⁻¹	(9)
quantum yield, photochemical yield	φ , Φ	1	(10)

$$k = \kappa (k_{\rm B}T/h) \exp(-\Delta^{\ddagger}G \circ /RT),$$

where k has the dimensions of a first-order rate constant and is obtained by multiplication of an nth-order rate constant by $(c^{\circ})^{n-1}$, κ is a transmission coefficient, and $\Delta^{\ddagger}G^{\circ} = \Delta^{\ddagger}H^{\circ} - T\Delta^{\ddagger}S^{\circ}$. Unfortunately the standard symbol $^{\circ}$ is usually omitted, and these quantities are usually written ΔH^{\ddagger} , ΔU^{\ddagger} , ΔS^{\ddagger} and ΔG^{\ddagger} .

(10) The quantum yield φ is defined in general as follows:

$$\phi = \frac{\text{number of defined events}}{\text{number of photons absorbed}}$$

For a photochemical reaction it can be defined as

$$\phi = \frac{\text{rate of conversion}}{\text{rate of photon absorption}} = \frac{\frac{d\xi}{dt}}{\frac{d\eta}{d\eta}}.$$

⁽⁹⁾ The quantities $\Delta^{\ddagger}H^{\circ}$, $\Delta^{\ddagger}U^{\circ}$, $\Delta^{\ddagger}S^{\circ}$ and $\Delta^{\ddagger}G^{\circ}$ are used in the transition state theory of chemical reaction. They are normally used only in connection with elementary reactions. The relation between the rate constant k and these quantities is