Synthesis and Properties of Multiply N-Confused Porphyrins

Evolution toward Totally N-Confused Porphyrins

Figure of object is one of the essential factors to determine the functionality. In the realm of chemistry, it is true that is fundamental the shape of the molecules for their properties such as optical, coordination, host-guest behavior, etc. Porphyrin is a widely studied functional pigment that can coordinate a variety of metals with four pyrrolic nitrogens in a square-planar arrangement in the core. In the biotic system, porphyrin plays an essential role as a reaction center like chlorophyll, photosynthetic reaction center in the plants, and hemoglobin, oxygen carrier in a red hemocyte of vertebrates. It also acts a useful biomimetic molecule in the artificial system.

From the structural resemblance to normal porphyrins, N-confused porphyrin (NCP), wherein one of the pyrrole rings has linkages with meso carbons at \(\alpha \) and \(\beta' \) positions, can form complexes with a variety of metals in unique inner- and outer-coordination modes. The new properties of NCP as a novel functional dye and metal coordination ligand are going to be still more revealed and explored. Quite new features, however, would emerge for the NCP analogs including two or more confused pyrroles, that is, multiply N-confused porphyrins (\(N_xCP \)). The “evolution” of the confused porphyrin family is shown in Figure 1. At the time the author’s research on such multiply \(N_xCP \) started, it could not be said whether such analogs were reality or not, and how the properties of these analogs were. The stability of \(N_xCP \), estimated by DFT calculations, decreased at ca. 18 kcal/mol by increasing the number of confused pyrrole rings. The author, however, believes that the evolution as seen in the section title will be ongoing by the efforts to design and prepare the target molecules.

Redox Control of N-Confused Porphyrins Metal Complexes Modulated by Anion at the Outer NH

N-Confused porphyrin bearing \(C_6F_5 \) groups at meso positions (NCP-F5), which was obtained by stepwise reactions, can form paramagnetic Cu\(^{II} \) complex as well as diamagnetic Ag\(^{III} \), Ni\(^{II} \), and Pd\(^{II} \) complexes, whose square-planar structures were elucidated by X-ray single crystal analyses. NCP behaves as chameleon-like ligand, which act dianionic and trianionic ones to form neutral square-planar complex by attachment and detachment of the proton at the peripheral nitrogen. Actually, diamagnetic Cu\(^{III} \) complex of NCP-F5 was obtained by oxidation and elucidated by X-ray diffraction analysis. The facile interconversion between Cu\(^{II} \) and Cu\(^{III} \) complexes was also achieved by the chemical oxidation/reduction (Figure 2).

![Figure 1](image1.png)

Figure 1 Evolution of N-confused porphyrin family.

![Figure 2](image2.png)

Figure 2 Conversion and color changes between Cu\(^{II} \) and Cu\(^{III} \) complexes of NCP-F5.
Metal complexes of NCP-F$_5$ exhibit the property of anion binding through the hydrogen bonding interaction at the peripheral NH of the confused pyrrole ring. NCP-F$_5$ unfunctionalized at the outer nitrogen shows no affinity. The binding constants of the MII complexes of NCP-F$_5$ for halide anions in CH$_2$Cl$_2$ increase in the order of F$^-$ > Cl$^-$ > Br$^-$ > I$^-$. The zwitterionic resonance form of the MII complexes of NCP and interactions between X$^-$ and C$_6$F$_5$ group are found essential for the efficient binding as judged by the small binding constants of metal complexes of phenyl-substituted NCP (NCP-H$_5$) for Cl$^-$ ($< 10 \text{ M}^{-1}$). The CuIII/CuII red-ox potential of NCP was controlled by the addition of anions bound, whose association constants enhance the facility of the oxidation (Figure 3). The stimulus at the peripheral nitrogen is transferred to the center metal through the confused pyrrole.

Figure 3 (a) Anion binding constants of CuII complex of NCP-F$_5$ in CH$_2$Cl$_2$, (b) shifts of the red-ox potential (vs. Fc$/^+$/Fc) coupled with CuIII/CuII in the differential pulse voltammetry (DPV) of CuII complex of NCP-F$_5$ (1 mM) in CH$_2$Cl$_2$ upon addition of Cl$^-$, ClO$_4^-$, and PF$_6^-$ as tetrabutylammonium salts (0.1 M) (DPV with Br$^-$ and I$^-$ could not be determined due to the oxidation potentials of these halide anions), and (c) a possible anion binding mode of CuII complex.

Cis- and Trans-Doubly N-Confused Porphyrins (N$_2$CP): Efficient Anion Binding Receptors and Building Units for the Supramolecular 1-D Networks

Cis-type of doubly N-confused porphyrins (cis-N$_2$CP) was synthesized by step-wise after repeated trials. 1H NMR and single crystal X-ray diffraction analyses have revealed the 3H’s (2CH’s and 1NH) arrangement in the core of cis-N$_2$CP both in solution and in the solid state, respectively. On the other hand, trans-isomer (trans-N$_2$CP) was obtained via fused porphyrin derivative. Aromatic feature of trans-N$_2$CP, bearing four inner protons (2CH’s and 2NH’s), due to 18π electronic system is contrasted to the weak aromaticity of cis-derivative. Both cis- and trans-N$_2$CP, trianionic and tetraanionic ligands as free bases, respectively, stabilize the higher oxidation states, CuIII and AgIII, in square-planar fashion. Moreover, an inner C-tolyl substituted PdII complex of cis-N$_2$CP was obtained using Pd(OAc)$_2$ in refluxing toluene.

Solid-state structure of CuIII complex of trans-N$_2$CP shows 1-D rod-like hydrogen bonding supramolecular network comparable with zigzag one seen in cis-derivatives (Figure 4). Furthermore, hydrogen bonding donating NH at the periphery of both N$_2$CP exhibits the different affinities for anions; higher (trans) and lower (cis) than NCP-F$_5$. The different geometries, cis and trans, drastically affect the properties in solution as well as the self-assembled structures in the solid state.
Figure 4 Hydrogen bonding 1-D chain in the solid state of CuIII complexes of (a) trans-N$_2$CP and (b) cis-N$_2$CP. Solvent molecules are omitted for clarity in (a).

Creation of New Concepts from Confused Porphyrin Analogs

Transformation of NCP and N-confused corrole isomer to new compounds have been investigated (Figure 5). CuII complex of the first aryl-substituted tripyrrinone derivative was obtained in the reaction of NCP-H$_5$ and Cu(OAc)$_2$ in refluxing toluene, and subsequent treatment with acid afforded a free tripyrrolic ligand that could bind a variety of transition metals. On the other hand, oxyindolophyrin, efficient fluorescent F$^-$ sensor, is obtained from corrorin, a byproduct of the synthesis for cis-N$_2$CP, by the treatment with SnCl$_2$. At least it can be said safely the reactivity of the α-position of confused pyrroles played an important role for such transformations. Incorporation of confusion into oligopyrrolic macrocycles, therefore, can be interpreted, in some sense, to activate macrocycles for further mutation.

Figure 5 X-ray structures (top and side views) of (a) tripyrrinone and (b) the transformation of corrorin to oxyindolophyrin.
Anion Binding Chemistry using Oligopyrrolyl-Macrocycles

Investigation on other pyrrole-derivatives is also applicable to the porphyrin chemistry including NCP family. Major parts of the studies on acyclic and cyclic oligopyrrolyl anion receptors including quinoxaline moiety were performed when the author worked at the group of Prof. Jonathan L. Sessler, University of Texas at Austin, during the period from October to December 2001. Quinoxaline-bridged porphyrinoids (QBP), the first macrocycles containing dipyrrrolylquinoxaline DPQ subunits, whose structures were confirmed by X-ray analyses, were synthesized from the condensation of the diformyl-substituted DPQ derivatives and 1,8-diaminoanthracene. The binding affinities for F\(^-\) and H\(_2\)PO\(_4\)\(^-\) in CH\(_2\)Cl\(_2\) were found to be enhanced relative to the simple DPQ “parent” system, presumably as the result of the combined effects of preorganization and cooperative binding permitted by the pyrrole NH donor groups. Furthermore, positive homotropic allosteric anion binding was observed and is ascribed to the structurally coupled nature of the two binding cavities present in the macrocycles (Figure 6).

![Diagram of QBP and complexes with F\(^-\)](image)

Figure 6 Optimized structures of quinoxaline-bridged porphyrinoid (QBP) and complexes with F\(^-\) based on ab initio calculations (HF/3-21G).
Publication

1. Maeda, H.; Osuka, A.; Furuta, H.
 “Anion Binding Properties of N-Confused Porphyrins at the Peripheral Nitrogen”

2. Maeda, H.; Furuta, H.
 “N-confused porphyrins as new scaffolds for supramolecular architectures”

3. Maeda, H.; Osuka, A.; Furuta, H.
 “Synthesis of A$_2$B$_2$ type cis-doubly N-confused porphyrins from N-confused dipyrrmethanes”

 “Doubly N-Confused Pentaphyrin”

 “Photochemistry of Doubly N-Confused Porphyrin Bonded to Non-Conventional High Oxidation State Ag(III) and Cu(III) Ions”

 "2,3-Dipyrrolylquinoxaline-based Anion Sensors"

7. Maeda, H.; Osuka, A.; Furuta, H.
 “Trans Doubly N-Confused Porphyrins: Cu(III) Complexation and Formation of Rodlike Hydrogen Bonding Networks”

 “Control of Cu(II) and Cu(III) States in N-Confused Porphyrin by Protonation/Deprotonation at the Peripheral Nitrogen”

9. Maeda, H.; Osuka, A.; Furuta, H.
 “Hydrogen Bonding 1-D Chain Network of cis-Doubly N-Confused Porphyrins”

“Oligopyrrole-based solid state self-assemblies”

11. Furuta, H.; **Maeda, H.**
“Chemistry of N-Confused Porphyrin: A Novel Porphyrin Isomer”
Oleoscience 2003, 3 (2), 77–82.

12. **Maeda, H.**; Osuka, A.; Furuta, H.
“2-Allenyl-2H-benzotriazole”

“N-Confused Porphyrin-Bearing meso-Perfluorophenyl Groups: A Potential Agent That Forms Stable Square-Planar Complexes with Cu(II) and Ag(III)”

“Facile Formation of N-Confused Porphyrin Dimers by Platinum(II) Coordination to Outer-Nitrogen Atoms”

“Doubly N-Confused Porphyrins as Efficient Sensitizers for Singlet Oxygen Generation”

16. Furuta H.; **Maeda, H.**; Osuka, A.
“Crystal structures of palladium(II) and copper(II) complexes of meso-phenyl tripyrrinone”

“Quinoxaline-Bridged Porphyrinoids”

18. Furuta H.; **Maeda, H.**; Osuka A.
“Confusion, inversion, and creation — a new spring from porphyrin chemistry”

“Quinoxaline-oligopyrroles: Improved pyrrole-based anion receptors”

20. Furuta, H.; **Maeda, H.**; Osuka, A.
“Regioselective Oxidative Liberation of Aryl-Substituted Tripyrrinone Metal Complexes from N-Confused Porphyrin”
21. Furuta, H.; Maeda, H.; Osuka, A.
“Theoretical Study of Stability, Structures, and Aromaticity of Multiply N-Confused Porphyrins”

22. Furuta, H.; Maeda, H.; Osuka, A.
“Oxyindolophyrin: A Novel Fluoride Receptor Derived from N-Confused Corrole Isomer”

“Acid-Base and Spectroelecetrochemical Properties of Doubly N-Confused Porphyrins”

“N-Confused Double-Decker Porphyrins”

“Inner C-arylation of doubly N-confused porphyrin-Pd complex in toluene — the possibility of a Pd$^{3+}$ intermediate”

26. Furuta, H.; *Maeda, H.*; Osuka, A.
“Stability and Structure of Doubly N-Confused Porphyrins”

27. Furuta, H.; *Maeda, H.*; Furuta, T.; Osuka, A.
“First Synthesis of *meso*-Tetrapyrrolylporphyrin”

28. Furuta, H.; *Maeda, H.*; Osuka, A.
“Doubly N-Confused Porphyrin: A New Complexing Agent Capable of Stabilizing Higher Oxidation States”